Percolation exercises 5

1. Let C_{n} be the event that there is an open crossing from one face of Λ_{n} to the opposite face. Use the square root trick and the event $U_{n, k}$ from exercise sheet 3 to show that when $\theta(p)>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}_{p}\left[C_{n}\right]=1 \tag{1}
\end{equation*}
$$

2. Here we prove the BK-Reimer inequality for increasing events dependent on finitely many edges. Recall the definition of the events $\overline{A_{i}}$ and \bar{B}, and that in the lectures, we reduced the statement to proving that

$$
\begin{equation*}
\overline{\mathbb{P}_{p}}\left[\overline{A_{i-1}} \circ \bar{B}\right] \leq \overline{\mathbb{P}_{p}}\left[\overline{A_{i}} \circ \bar{B}\right] \tag{2}
\end{equation*}
$$

Let $s: \overline{A_{i-1}} \circ \bar{B} \rightarrow \overline{A_{i}} \circ \bar{B}$ be defined as follows. If $\bar{\omega} \in \overline{A_{i-1}} \circ \bar{B}$ has witnesses I for $\overline{A_{i-1}}$ and J for \bar{B} such that I does not contain e_{i}, then set $s(\bar{\omega})=\bar{\omega}$. If all such witnesses I and J are such that $e_{i} \in I$, then obtain $s(\bar{\omega})$ by exchanging e_{i} and e_{i}^{\prime}, or more precisely:

$$
s(\bar{\omega})(e)= \begin{cases}\bar{\omega}(e) & e \neq e_{i}, e_{i}^{\prime} \tag{3}\\ \bar{\omega}\left(e_{i}^{\prime}\right) & e=e_{i} \\ \bar{\omega}\left(e_{i}\right) & e=e_{i}^{\prime}\end{cases}
$$

Prove that s is well-defined, is an injection, and is measure-preserving (that is, that $\overline{\mathbb{P}}_{p}[\bar{\omega}]=\overline{\mathbb{P}}_{p}[s(\bar{\omega})]$ for all $\left.\bar{\omega} \in \overline{A_{i-1}} \circ \bar{B}\right)$. Deduce that (2) holds.
3. Recall we defined $\theta_{n}(p)=\mathbb{P}_{p}\left[0 \leftrightarrow \partial \Lambda_{n}\right]$. In this question we show that $\theta_{n}\left(\frac{1}{2}\right)$ decays polynomially in n. Let $R_{n}=[-n, n] \times[-n, n-1]$ as a subset of \mathbb{Z}^{2}, and let H_{n} be the event that there is an open path in ω from left to right in H_{n}. In the lectures we showed that $\mathbb{P}_{\frac{1}{2}}\left[H_{n}\right]=\frac{1}{2}$ for all $n \geq 1$.
(a) Show that

$$
\begin{equation*}
\theta_{2 n}\left(\frac{1}{2}\right) \geq \frac{1}{4 n} \tag{4}
\end{equation*}
$$

(b) Show that

$$
\begin{equation*}
\mathbb{P}_{\frac{1}{2}}\left[\left\{0 \leftrightarrow \partial \Lambda_{n}\right\} \circ\left\{0 \leftrightarrow \partial \Lambda_{n}\right\}\right] \geq \frac{1}{4 n} \tag{5}
\end{equation*}
$$

and deduce a better lower bound for $\theta_{n}\left(\frac{1}{2}\right)$ than in part (a).
(c) Let A_{n} be the event that there is an open circuit in ω^{*} in the annulus $\Lambda_{2 n} \backslash \Lambda_{n}$ surrounding Λ_{n}. Assume we have that $\mathbb{P}_{\frac{1}{2}}\left[A_{n}\right] \geq c>0$. Show that there is some $c^{\prime}>0$ such that

$$
\begin{equation*}
\theta_{n}\left(\frac{1}{2}\right) \leq n^{-c^{\prime}} \tag{6}
\end{equation*}
$$

4. In this question, we compute p_{c} for (bond) percolation on the triangular lattice \mathbb{T} in

Figure 1
two dimensions.
(The star-triangle transformation) Let G be a planar graph and let a, b, c be vertices in G which form a triangle (that is, they are all connected by edges). Define G^{\prime} to be the graph obtained from G by removing the edges $a b, b c$, and $a c$, adding a vertex x, and adding edges $a x, b x, c x$. (We say G^{\prime} is obtained from G by the star-triangle transformation). See Figure 1.
(a) Let \mathbb{P}_{p} be the Bernoulli percolation measure with parameter p on the edges of G, and let $\mathbb{P}_{1-p}^{\prime}$ be the percolation on the edges of G^{\prime} such that the parameter is $1-p$ on the edges $a x, b x$, and $c x$, and is p on all other edges. Show that if

$$
\begin{equation*}
p^{3}+1=3 p, \tag{7}
\end{equation*}
$$

one can define a coupling of \mathbb{P}_{p} and $\mathbb{P}_{1-p}^{\prime}$ on $\{0,1\}^{E(G)} \times\{0,1\}^{E\left(G^{\prime}\right)}$ such that probabilities of connections between vertices of G are the same in $\omega \sim \mathbb{P}_{p}$ and $\omega^{\prime} \sim \mathbb{P}_{1-p}^{\prime}$. (b) Relate the triangular lattice \mathbb{T} and the hexagonal lattice \mathbb{H} by the star-triangle transformation. Show that if (7) holds, then $\mathbb{P}_{p}^{\mathrm{T}}[0 \leftrightarrow \infty]=\mathbb{P}_{1-p}^{\mathbb{H}}[0 \leftrightarrow \infty]$.
(c) Assume that our sharpness theorem holds for the lattices \mathbb{T} and \mathbb{H}. Use duality to show that $p_{c}(\mathbb{T})+p_{c}(\mathbb{H})=1$.
(d) Use parts (a), (b), and (c) to show that $p=p_{c}(\mathbb{T})$ is given by (7).

