
Percolation exercises 6

1. In this question we prove a crucial component of the conformal invariance proof.
Drawing pictures may help.

Let G be a H-domain. Recall in the lectures we defined ΩG = {0, 1}F (G), and Ωloop
G

as the set of loop configurations on G (subgraphs with every vertex having even
degree). In the lectures in week 6 we will define the following. Write Emid(G) for the
set of mid-points of edges of G. For u, v, r, s ∈ Emid(G), write

• Ωloop
G,uv for the set of configurations of disjoint loops on G together with a self-

avoiding path u↔ v, disjoint from the loops;

• Ωloop
G,uv,rs for the set of configurations of disjoint loops on G together with a two

self-avoiding paths u↔ v and r ↔ s, disjoint from the loops and each other.

Figure 1: An example on the left of an element of Ωloop
G,uv,rs, and on the right of an element

of Ωloop
G,uv

See Figure 1. For the rest of the question, we let a, b, c ∈ Emid(G) lying on the
boundary of G, and let z ∈ Emid(G).

(a) Show that there is a bijection between Ωloop
G,bc and ΩG, such that the self-avoiding

path γ joining b and c becomes the interface Γ in ω ∈ ΩG between open clusters
touching the boundary arc (b, c) and closed clusters touching (c, b).

(b) Let γ0 be a fixed self-avoiding path b↔ c. Let

• Ωloop
G,bc[γ0] for the set of configurations η ∈ Ωloop

G,uv whose self-avoiding path
joining b and c is γ0

• and similar for Ωloop
G,az,bc[γ0].
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Show that

∣∣∣Ωloop
G,az,bc[γ0]

∣∣∣ =
0 γ0 disconnects a from z∣∣∣Ωloop

G,bc[γ0]
∣∣∣ otherwise.

(1)

(c) We now define

Fa(z) :=

∣∣∣Ωloop
G,az,bc

∣∣∣
|ΩG|

. (2)

Use (a) and (b) to show that

Fa(z) = P 1
2
[Γ does not disconnect a from z], (3)

where P 1
2

is our percolation on the faces of G.

(d) Let z, z′ ∈ Emid(G). Show that

|Fa(z)− Fa(z
′)| ≤ P 1

2
[Γ disconnects exactly one of z, z′ from a]. (4)

(e) Let δ > 0 and let U ⊂ C be a Jordan domain. All of the above works when
G = Uδ := δT ∩ U . For q ∈ (0, 1], let Λq be the square of side-length q centred
at 0. We focus on the case when U = Λ1. From our work on RSW, one can
show that there exists α ∈ (0, 1] and c > 0 such that for all δ > 0 and q ∈ (0, 1),

P 1
2
[Λq

Uδ←→ ∂Uδ] ≤ c · qα. (5)

Show that in the case z, z′ lie on opposite faces of ∂Λq for some q ∈ (0, 1), we
have that for all δ > 0,

|Fa(z)− Fa(z
′)| ≤ c|z − z′|α. (6)

2. In this question, we study a different model on Z2. A mirror at a vertex x is a line
segment oriented at 45◦ to the lattice Z2 and centred at x. The orientation can
be either north-west or north-east. Consider configurations ω where each vertex is
assigned either a north-west mirror, or a north-east mirror, or no mirror.

Let p ∈ [0, 1]. The probability of Pp[ω] is defined as follows. At each vertex x,
independently place a north-west mirror with probability p/2, a north-east mirror
with probability p/2 and no mirror with probability 1− p.

A configuration ω gives a collection of loops: each edge of Z2 is on exactly one loop,
and at a vertex x, if there is a mirror then loops reflect off the mirror, whereas if
there is no mirror, loops pass straight through the vertex and cross each other. See
Figure 2, where one of the loops is highlighted in red.

We are interested in the event that 0 is connected by a loop to infinity, which we
denote by {0↔∞}. It is conjectured that for all p ∈ (0, 1],

Pp[0↔∞] = 0. (7)
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Figure 2: An example of a configuration ω, giving each vertex either a north-west mirror,
or a north-east mirror, or no mirror.

(a) Interpreting mirrors as edges of a copy of Z2 or its dual, and using our knowledge
about critical percolation, show that when p = 1, (7) holds.

(b) For p < 1, proving that (7) holds is an open problem. In the rest of this question,
we will show that for all p ∈ (0, 1]

Pp[0↔ ∂Λn] ≥
1

2n+ 1
. (8)

Instead of on Z2, consider the model of mirrors above on an infinite cylinder
Z2n+1 × Z of odd width 2n+ 1 (this is a discrete circle of length 2n+ 1 in the
x direction, and Z in the y direction). Show that any configuration ω on this
graph deterministically has an infinite path from y = +∞ to y = −∞.

(c) Fix some vertex in Z2n+1 × Z and call it 0. Show that on Z2n+1 × Z,

Pp[0↔∞] ≥ 1

2n+ 1
, (9)

and deduce that (8) holds on Z2n+1 × Z.

(d) Use independence to show that this implies that (8) holds on Z2.

3. In this question we work with bond percolation on Z2. Drawing some pictures may
help.

(a) Using our work on RSW, and the FKG inequality, show that there exists c > 0

such that for all n ∈ N,

P 1
2
[0↔ ∂Λn] ≤ c · P 1

2
[0↔ ∂Λ2n]. (10)

(b) Again using RSW and FKG, show that there exist c, C > 0 such that, for all
n ∈ N and x ∈ ∂Λn,

c · P 1
2
[0↔ ∂Λn]

2 ≤ P 1
2
[0↔ x] ≤ C · P 1

2
[0↔ ∂Λn]

2, (11)

where we use part (a) for the second inequality.
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(c) Again using RSW and FKG, show that for all n,N ∈ N such that 2n ≤ N ,
there is a c > 0 such that

P 1
2
[0↔ ∂ΛN ] ≤ P 1

2
[0↔ ∂Λn]P 1

2
[Λn ↔ ∂ΛN ] ≤ c · P 1

2
[0↔ ∂ΛN ]. (12)

(You won’t need part (b) for this). This is known as quasi-multiplicativity. As
a bonus (not required), can you replace 2n ≤ N with αn ≤ N for arbitrary
α > 1?
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