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Energetic particle Precipitation (EPP) – Atmospheric Effects
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Top-Down Atmospheric Coupling
From Gray et al., Rev. Geophys., 2010

Stratospheric ozone connects to winds, waves, and NAO
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Proposed influence on regional climate

Surface Air Temperature responds to particle precipitation activity

ERA-40 data, from Seppälä et al., J. Geophys. Res., 2009

• Proposed mechanism:
– more particle precipitation and NOx production,
– ozone decrease leading to dynamical cooling of stratosphere,
– effect on planetary wave propagation and the polar vortex,
– influence on Northern Annular Mode and propagation towards the surface.
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Different populations of EPP

– Different populations affect different regions of polar atmosphere
– Sporadic EPP major source of ionization at 20–90 km
– Energy of the particle determines the penetration altitude
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Solar cycle behaviour of EPP
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EPP and atmospheric chemistry

energetic particles precipitate into atmosphere
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– Ion chemistry connects EPP to production of HOx and NOx

– HOx (= H + OH + HO2) and NOx (N + NO + HO2) are important to ozone chemistry
– Ozone connects to temperature and dynamics
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D-region ion chemistry scheme
Positive ions, from the Sodankylä Ion and Neutral Chemistry (SIC) model
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D-region ion chemistry scheme
Negative ions, from the Sodankylä Ion and Neutral Chemistry (SIC) model
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Changes in hydrogen and nitrogen species due to ion chemistry

Particles precipitate into middle atmosphere
↓ ↓ ↓ ↓ ↓

– Ion chemistry dissociates N2 and H2O

– Negative ion chemistry redistributes NOy (inside the blue box)
– From Verronen and Lehmann, Ann. Geophys., 2013.
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SIC model: example of HNO3 production paths

N2 + p+(E) → N+
2 + e− + p+(E− ∆E)

O2 + O2 + e− → O−2 + O2

O−2 + O3 → O−3 + O2

O−3 + CO2 → CO−3 + O2

CO−3 + NO2 → NO−3 + CO2

NO−3 + H2O + M → NO−3 (H2O) + M

NO−3 (H2O) + HNO3 → NO−3 (HNO3) + H2O

NO−3 (HNO3) + H+(H2O)4 → HNO3 + HNO3 + 4H2O

−−− −−−
Net : H2O + O3 + NO2 → OH + HNO3 + O2
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SIC model: example of HOx production paths

N2 + p+(E) → N+
2 + e− + p+(E− ∆E)

N+
2 + O2 → O+

2 + N2

O+
2 + O2 + M → O+

4 + M

O+
4 + H2O → O+

2 (H2O) + O2

...

O+
2 (H2O)2 + H2O → H3O+(OH)H2O + O2

H3O+(OH)H2O + H2O → H+(H2O)3 + OH

H+(H2O)3 + H2O + M → H+(H2O)4 + M

H+(H2O)4 + e− → H + 4H2O

−−− −−−
Net : H2O → OH + H
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P/Q: relative production/loss rates from SIC

P/Q = (ionic production - ionic loss) / ionization rate

– H2O becomes the limiting factor at upper altitudes

– At night: more negative ions, more HNO3 production, less H production
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P/Q: relative production/loss rates from SIC

P/Q = (ionic production - ionic loss) / ionization rate

– Note: Zero net change of NOy (incl. HNO3) by negative ion chemistry

– Note: net production of NOx is by positive ion chemistry (≈ 1.25Q, not included here)
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SPE: Proton flux observations (GOES-11)

The Halloween storm
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Large SPEs are infrequent, but they are
extreme examples of solar forcing on the middle atmosphere
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Ionization due to protons

At the peak of the Halloween SPE of 2003
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SPEs typically have largest impact in the upper
stratosphere and mesosphere
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SPE: example of geomagnetic cutoff

Rodger et al., Journal of Geophysical Research (2006)
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MLS/Aura observations

– Microwave Limb Sounder, measures emissions at mm and sub-mm wavelengths
– Launched in July 2004 into a near-polar orbit, observations cover

latitudes between 82◦S – 82◦N, day and night
– Can be used to monitor temperature and more than 15 trace gases,

including O3, OH, and HNO3

– First satellite instrument providing continuous observations of
mesospheric OH and HO2
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Nitric acid: comparisons

Modeling: Sodankylä Ion and Neutral Chemistry
– Uses MLS temperatures, neutral density, and water vapor.
– 80◦N/December–January, no diurnal variations.
– Results reduced to MLS altitude resolution using averaging kernels.

Observations: data version 3.30, SZA > 100◦ (night-time)
– Data are daily means, uncertainty is standard error of the mean.
– Useful range up to 1.5 hPa (≈50 km) in normal conditions,

but can be extended into mesosphere when high amounts are observed.
– Mesospheric HNO3 data have not been validated.
– Comparison is made with the highest amount of HNO3 observed after the peak of SPE forcing,

assuming that it is least affected by dynamics.
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SIC vs. MLS: nitric acid, December 2006 SPE

Before (left), during (middle), and after (right) the SPE forcing
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– The model overestimates the HNO3 increase on Dec 9 at 60–65 km.

– 1-D SIC does not capture the recovery on Dec 11.

– For more details, see Verronen et al., J. Geophys. Res., 2011.
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MLS: HNO3 (top) and CO (bottom)

Daily avarages at approx. 60 km

– Polar vortex dynamics strongly affects HNO3 distribution over the pole.
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Odd hydrogen: comparisons

Modeling: Sodankylä Ion and Neutral Chemistry
– Uses MLS temperatures, neutral density, and water vapor.
– Latitudes >60◦N, solar proton events of January 2005.

OH observations: data version 3.30
– Useful range up to 0.0032 hPa (≈90 km).
– Mesospheric data have been validated by Pickett et al., JGR, 2008.
– Data are averaged at 65–75◦N, for day and night separately.

MLS was the first instrument that provided continuous and
global observations of mesospheric HOx.
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SIC vs. MLS: hydroxyl, January 2005
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– A good agreement in general.
– Model overestimation at night during most intense forcing.
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SIC vs. MLS: OH
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– Ozone response is well modelled.
– From Verronen et al., Geophys. Res. Lett., 2006
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SPE summary

– SPEs cause substantial changes in the middle atmosphere.

– Effects cover the whole polar cap, and are easy to detect from satellites.

– Large SPEs are infrequent, most like occuring during solar maximum.

– SPE effects can be well modelled, when D-region ion chemistry is considered.
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Role of electron precipitation below 80 km

• Compared to solar proton events, electron precipitation typically has smaller fluxes, more
temporal variability, and it affects more restricted latitude regions.

• Electron flux observations are not always straight forward to use in atmospheric modeling.
=⇒ It is not clear how big the direct effect of electron precipitation is.
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Mesospheric odd hydrogen: indicator of EPP

• nighttime HOx (= H + OH + HO2) concentration is relatively low.
=⇒ It can be enhanced by moderate EPP forcing.

• HOx has a relatively short chemical lifetime (hours) below ≈ 80 km.
=⇒ Returns quickly to normal values after EPP forcing stops.

Odd hydrogen follows closely
increases and decreases of EPP forcing

• In the case of major solar proton events, HOx increases are relatively easy to
detect due to the large fluxes and polar cap coverage of the forcing.
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How to study the electron impact in the mesosphere?

• Find the connection between precipitating electrons (measured in the radiation
belts by MEPED/POES) and mesospheric OH observed by MLS/Aura.

• Look for
1) OH increases in high-precipitation cases, e.g. March 2005.
2) signatures of electron precipitation in OH during years 2004–2009.

• Ask
1) is electron precipitation causing measurable changes in OH?
2) how often is OH affected by electron precipitation?
3) can we model OH and ozone changes caused by electrons?
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Mean nighttime OH, March 5–10, 2005

MLS/Aura, Altitudes 71 – 78 km, Units: cm−3
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– Radiation belt EPP signature at magnetic latitudes 55− 72o
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Electron precipitation and OH in March 2005

Magnetic latitudes 55− 65oN
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Electron count rate vs. OH concentration

Daily averages, magnetic latitudes 55− 65oN
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High electron count rates correspond to high OH concentrations!
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Electron count rate vs. OH concentration

Daily averages, magnetic latitudes 55− 65oS
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Modelling approach

• Consider months with high electron fluxes were considered:
January 2005, March 2005.

• Model input:
daily zonal mean electron fluxes calculated using data from three MEPED instruments.
Data correction applied (e.g. proton contamination).
Form of energy-flux spectrum needs to be assumed.

• Model runs:
two runs, one with daily electron forcing (EEP), one with constant quiet-time electron
background (CTR).

– Using daily mean data improves the signal-to-noise ratio, and compensates differences between
MEPED and MLS data sampling.

– Does the model can produce anything similar to the observations?
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Comparison of relative OH and ozone changes

Magnetic latitudes 59− 65o

Overall behavior is captured by the model.
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Comparison of OH altitude profiles

Magnetic latitudes 59− 65oN

OH concentration (cm−3)

• OH increases between 60 and 80 km.

• SIC generally underestimates OH below 70 km, electron flux/spectrum needs adjustment?

• However, the differences are relatively small (log scale!) and there are other possible reasons.
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Comparison of ozone altitude profiles

Magnetic latitudes 59− 65oN

O3 mixing ratio (ppmv)

• Ozone decreases above 65 km.

• SIC and MLS are in reasonable agreement.

• Again, no need for substantial flux corrections above 70 km (E < 300 keV)
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Summary

• Energetic electron precipitation (EEP) is significantly affecting mesospheric odd hydrogen at
the magnetic latitudes connected to the outer radiation belt.

• In March 2005 and April 2006, EEP causes factor-of-two increases in daily average OH at
71–78 km altitude and can explain 56–87% of OH day-to-day variability.

• No electron signature is found in stratospheric OH. This indicates that >3 MeV electron fluxes
are relatively small.

• Comparisons between Sodankylä Ion and Neutral Chemistry model and MLS/Aura
observations indicate that EEP-caused ozone changes can be tens of percent at 70–80 km.
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EPP and atmospheric ozone – solar cycle variability
Indirect NOx effect vs. direct HOx effect

Indirect NOx (= N + NO + NO2):
– NOx is produced in the MLT region where it cannot directly affect ozone
– NOx must be transported to stratosphere where ozone can be depleted
– Transport takes place during winter time when polar vortex is in place
– mechanisms depends on NOx production and atmospheric dynamics
– most of the production by auroral electrons above 90 km

Direct HOx (= H + OH + HO2):
– HOx produced in the mesosphere and affects ozone in-situ
– mechanism depends on HOx production only
– so-called medium-energy electrons are needed from, e.g. radiation belts
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Indirect effect from ACE-FTS observations
Päivärinta et al., J. Geophys. Res., 2013

– Wintertime NOx descend is easy to observe, until stratopause
– Yearly variability depends on both NOx production and descent
– Effect on stratospheric ozone remains unclear, because there is large variability in general
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Indirect effect from MIPAS observations
Funke et al., J. Geophys. Res., 2014

– Descent better assessed by NOy observations and tracer correlations
– Extra NOy descends down to 30–20 km every year, also in the NH
– A lot of year-to-year varibility, especially in the NH
– Effect on stratospheric ozone still unclear
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Indirect effect from SOCOL model
Rozanov et al., Surv. Geophys., 2012

– SPE + auroral effect on ozone from model ↓
– Significant effects in mesosphere/upper stratosphere
– Leads to NAM-like temperature patterns at surface

– But the magnitude is smaller than what is observed
– Mesospheric forcing by radiation belt electrons is missing
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Direct effect from odd hydrogen observations
From Andersson et al., J. Geophys. Res., 2012

Correlation r(OH,ECR) in 2004–2009, magnetic latitudes 55− 65oN
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– ECR = observed count rate of 100–300 keV radiation belt electrons
– Correlation is related to strong precipitation events
– Declining solar activity, declining correlation
– No stratospheric correlation, no effect by >3 MeV electrons
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Correlation r(OH,ECR) in 2004–2009 at 75 km
From Andersson et al., J. Geophys. Res., 2012

Magnetic latitudes 55− 65oN
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35% of months show electron impact in the mesosphere (r > 0.35)
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Direct effect from ozone observations
Andersson et al., Nature Commun., 2014

Events are frequent and strong enough for solar cycle effects
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Direct ozone effect from observations
Andersson et al., Nature Commun., 2014

Superposed epoch analysis of 60 events in 2002–2012

– Tens of percent reduction of ozone in middle mesosphere
– One event affects ozone up to 10 days
– Difference between poles, distribution of events, winter/summer
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Direct solar-cycle effect from observations
Andersson et al., Nature Commun., 2014

Ozone yearly anomaly for high and low electron forcing

– Effects on heating/cooling and dynamics need to be studied
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Complete EPP forcing for full effect modelling

– All particle inputs have to be included for a complete picture
– Solar protons, OK, satellite observations readily usable
– Auroral electrons, OK, magnetic Ap index can be used as proxy
– Radiation belt electrons, not OK, suffer from satellite data issues
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Published in 2014
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Summary

• Hypothesis: EPP modulates ground-level regional climate on solar cycle time
scales through the top-down mechanism

• First we have to understand the atmospheric ozone varibility caused by EPP.
• Indirect NOx effect on stratospheric ozone has been modeled but not observed.
• Direct HOx effect of radiation belt electrons on mesospheric ozone has been

observed and needs to be modelled.
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• Päivärinta, S.-M., Seppälä, A., Andersson, M.E., Verronen, P.T., Thölix, L., and Kyroölä, E., Observed effects
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