Electron Energy-Loss Spectroscopy

Or as...

Miklós Nemesszeghy

EELS

Southern Shortfin Eel, Anguilla australis Richardson 1841 Gomon, M.F. & Bray, D.J. 2024 FISHES OF AUSTRALIA

EELS

- Energy loss of transmitted electrons
- Used in TEM instruments
- Acquired data quite similar to XAS
- Elastic scattering
- Inelastic scattering

Elastically scattered electrons

Inelastically scattered electrons:

Plasmon excitations and "band hopping"

- Plasmon: oscillation waves in electron density
- Low in energy
- Possible source for electron scattering
- "Band hopping": electron excitations from valence band to conduction band

Summary of Scattering Events

- Elastically scattered and undisturbed electrons
- Electron excitations and removal
- Plasmon excitations
- (Phonon excitations are counted as elastic)
- Multiple scattering events possible

EELS atlas, EELS.info, Gatan corporate, EELS Atlas | EELS.info

EELS atlas, EELS.info, Gatan corporate, EELS Atlas | EELS.info

 ZrO_2

EELS atlas, EELS.info, Gatan corporate, EELS Atlas | EELS.info

What we can get

- Elemental composition
- Sample thickness
- Chemical environment (EXELFS)
- Oxidation states (ELNES)
- Valence electron density (VEELS)

Elemental Composition

- Qualitative: characteristic edges for elements
- Quantitative:
 - Pick two edges of the same shell to compare (for different elements)
 - Remove background
 - Get the area of the (now) peak (by integrating)
 - Peak areas reflect atom density (more of the element -> more scattering)
 - Fit reference spectra (B_{a}, B_{b})
 - Element-element ratio: $\frac{N_a}{N_b} = \frac{B_a I_{ka}(\beta, \Delta) \sigma_{kb}(\beta, \Delta)}{B_b I_{kb}(\beta, \Delta) \sigma_{ka}(\beta, \Delta)}$
- Small and noisy edges are difficult

Sample thickness

- If independent scattering events ⇒ Poisson distribution
- Average scattering events per electron: $\frac{t}{\lambda} = \ln \frac{I_{\text{total}}}{I_0}$
- Approximation of mean free path λ
- Other, more complicated, methods exist

Extended Energy-Loss Fine Structure (EXELFS)

- Same as EXAFS
- Choose edge
- Remove background
- Remove smooth edge structure
- \bullet Transform energy loss to electron wave number k
- Weigh by k^n
- Preform Fourier transform
- Curve-Fitting for coordination environment

•
$$\chi(k) = \sum_j \frac{N_j}{r_j^2} \frac{f_j(k)}{k} e^{-\frac{2r_j}{\lambda_i} - 2\sigma_j^2 k^2} \sin\left(2kr_j + \phi(k)\right)$$

Energy-Loss Near-Edge Structure (ELNES)

- Same as XANES
- Element oxidation state
- Energy loss from electron excitations
- Reflects the available excitation paths and thus the occupied/unoccupied orbitals
- Valence state induction from edge positions

Valence Electron Energy-Loss Spectroscopy (VEELS)

- Low loss region: Plasmon peaks
- Possible to identify materials with reference spectra if the plasmon peaks are sharp enough
- Possible plasmon excitation energies from peak position
- Plasmon damping effects from peak width
- Material band gap theoretically obtainable

Together with STEM

- Unique contrast effects
- Elemental maps
- Zero- and Low-loss images
- Etc.
- Points of interest to measure

Pros and Cons

Pros

- High resolution
- Various information gained and multitude of uses
- Works well together with TEM
- No synchrotron needed

Cons

- Requires TEM setup
 - High vacuum, electron optics, etc.
- Sample preparation
 - Thin, electron transparent (same as TEM)
- Difficulty of quantitative analysis, reference heavy

Research Example #1

Journal of Power Sources 354 (2017) 41-47

High-power durability of LiCoO₂ thin film electrode modified with amorphous lithium tungsten oxide

Tetsutaro Hayashi ^{a, *}, Yasutaka Matsuda ^b, Naoaki Kuwata ^b, Junichi Kawamura ^b

^a Sumitomo Metal Mining Co., Ltd, Battery Research Laboratories, 17-3, Isoura-cho, Nihama, Ehime, 792-0002, Japan

^b Tohoku University Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan

High-power durability of LiCoO₂ thin film electrode modified with amorphous lithium tungsten oxide

- Amorphous Li₂WO₄ on LiCoO₂ electrode
 - Li₂WO₄ Li-ion conductive
 - Can protect the electrode from the electrolyte
- Only done under very controlled environment
- Effects of moist air on Li₂WO₄ coated LiCoO₂
- EELS (and XPS) for composition and contaminations
 - Spots to measure with STEM
 - 2 nm thick layer

T. Hayashi, Y. Matsuda, N. Kuwata, and J. Kawamura, "High-power durability of LiCoO2 thin film electrode modified with amorphous lithium tungsten oxide," *Journal of Power Sources, vol. 354, pp. 41-47, 2017/06/30/ 2017, doi: 10.1016/j.jpowsour.2017.04.036.*

High-power durability of LiCoO₂ thin film electrode modified with amorphous lithium tungsten oxide

- Layer on LiCoO₂ after electrochemical tests
- B: CoO peak
- Co-L peak shifts to lower energy -> valence reduction from 3+

T. Hayashi, Y. Matsuda, N. Kuwata, and J. Kawamura, "High-power durability of LiCoO2 thin film electrode modified with amorphous lithium tungsten oxide," *Journal of Power Sources, vol. 354, pp. 41-47, 2017/06/30/ 2017, doi: 10.1016/j.jpowsour.2017.04.036.*

High-power durability of LiCoO₂ thin film electrode modified with amorphous lithium tungsten oxide

- Interface between LiCoO₂ and Li₂WO₄ after electrochemical tests
- A, and Co-L energy shift -> Li deficient phase
 - Li_{1-x}CoO_{2-y}

Research Example #2

Dalton Transactions

PAPER

Cite this: Dalton Trans., 2017, 46, 4796

Received 10th February 2017, Accepted 16th March 2017 DOI: 10.1039/c7dt00512a rsc.li/dalton

Atomic layer deposition of nickel-cobalt spinel thin films

D. J. Hagen, T. S. Tripathi and M. Karppinen 💿 *

We report the atomic layer deposition (ALD) of high-quality crystalline thin films of the spinel-oxide system $(Co_{1-x}Ni_x)_3O_4$. These spinel oxides are ferrimagnetic p-type semiconductors, and promising material candidates for several applications ranging from photovoltaics and spintronics to thermoelectrics. The spinel phase is obtained for Ni contents exceeding the x = 0.33 limit for bulk samples. It is observed that the electrical resistivity decreases continuously with x while the magnetic moment increases up to x = 0.5. This is in contrast to bulk samples where a decrease of resistivity is not observed for x > 0.33 due to the formation of a rock-salt phase. From UV-VIS-NIR absorption measurements, a change from distinct absorption edges for the parent oxide Co_3O_4 to a continuous absorption band ranging deep into the near infrared for $0 < x \le 0.5$ was observed. The conformal deposition of dense films on high-aspect-ratio patterns is demonstrated.

Atomic layer deposition of nickel–cobalt spinel thin films

- Semiconducting thin films from available elements
 - Applications: Transparent conductors, photocatalysts, thermoelectric generators, electrodes
- P-type oxides have low conductivity
- $(Co_{1-x}Ni_x)_3O_4$, $x \in [0, 1]$ was investigated
- ALD for deposition
- EELS for determining the mean oxidation state of Co

D. J. Hagen, T. S. Tripathi, and M. Karppinen, "Atomic layer deposition of nickel–cobalt spinel thin films," *Dalton Transactions, 10.1039/C7DT00512A vol. 46, no. 14, pp. 4796-4805, 2017, doi: 10.1039/C7DT00512A.*

Atomic layer deposition of nickel–cobalt spinel thin films

- Relativistic quantum chemistry
 - Energy difference in p-orbitals
 - L = 2nd electron shell
 - Assumption: $L_1 = 2s$, $L_2 = 2p_{1/2}$, $L_3 = 2p_{3/2}$
- Figure: 2p electrons excited to 3d
- Empirical:
 - $\frac{L_3}{L_2} \approx 4.8$ for Co³⁺ • $\frac{L_3}{L_2} \approx 3.3$ for Co^{2.67+}

•
$$\frac{L_3}{L_2} = 3.5 => \text{Oxidation} < 3+$$

Fig. 4 EELS graph for the $(Co_{1-x}Ni_x)_3O_4$ film with x = 0.33: the ratio of the Co L₃ and L₂ peaks strongly indicates a valence lower than +3.

D. J. Hagen, T. S. Tripathi, and M. Karppinen, "Atomic layer deposition of nickel–cobalt spinel thin films," *Dalton Transactions, 10.1039/C7DT00512A vol. 46, no. 14, pp. 4796-4805, 2017, doi: 10.1039/C7DT00512A.*

Research Example #3

Microsc. Microanal. 20, 1246-1253, 2014 doi:10.1017/S1431927614000543

© MICROSCOPY SOCIETY OF AMERICA 2014

Local Band Gap Measurements by VEELS of Thin Film Solar Cells

Debora Keller,^{1,2,*} Stephan Buecheler,¹ Patrick Reinhard,¹ Fabian Pianezzi,¹ Darius Pohl,³ Alexander Surrey,^{3,4} Bernd Rellinghaus,³ Rolf Erni,² and Ayodhya N. Tiwari¹

 ¹Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Thin Films and Photovoltaics, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland
²Empa—Swiss Federal Laboratories for Materials Science and Technology, Electron Microscopy Center, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland
³Institute for Metallic Materials, IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany
⁴Institut für Festkörperphysik, TU Dresden, D-01062, Germany

Local Band Gap Measurements by VEELS of Thin Film Solar Cells

- VEELS for local band gap measurements
 - For solar cells
- Cu(In, Ga)Se₂ with varying Cu, In and Ga
- Two methods:
 - "Parabolic fit"
 - "Inflection point"

Parabolic fit

- Parabolic start for direct band gap semiconductors.
- Parabola, opening right, fitted
- Parabola-energy axis intersection gives the band gap

Inflection point

- The first maximum of the derivative gives the band gap.
- Three different ways tried

Local Band Gap Measurements by VEELS of Thin Film Solar Cells

- Issues in reproducing results -> high error
- Both methods overestimated the band gap.
 - Measured composition beforehand
- Possible reasons:
 - Sample damage (from 300 keV electron beam)
 - Too much noise
 - Measurement too sensitive to local structure

Further information

- Gatan corporate: <u>EELS.info</u>
- R. F. Egerton, *Electron Energy-Loss Spectroscopy in the Electron Microscope.* Springer New York, NY, 2011.
 - More than you would ever want to know about EELS

Here's another eel

Reedfish Michal Zalewski 2006 Wikipedia https://creativecommons.org/share-yourwork/licensing-considerations/compatible-licenses