CHEM-E4205 Crystallography Basics and Structural Characterization

Infrared spectroscopy (IR)

Freya Huck & Anni Virta 29.05.2024

Engineering

https://www.agilent.com/en/product/molecular-spectroscopy/ftirspectroscopy/transmission-ftir-mode

Chieng, B.W. et al. Effects of Graphene Nanopletelets on Poly(Lactic Acid)/Poly(Ethylene Glycol) Polymer Nanocomposites, Polymers 6 (2013) 93-104.

Theory and principle

Theory

What is IR-Spectroscopy

 Interaction between matter and IR What is IR

• Electromagnetic radiation

• 4000-600 cm⁻¹

- Molecules absorb IR
 - Transformation into molecular vibrations

Molecular vibrations

Engineering

- Molecules absorb
 IR
 - Transformation into molecular vibrations

Molecular vibrations

FTIR

Transmission

- Transmitted light collected by detector

Attenuated Total Reflectance -internally reflected IR Sample Crysta

https://www.bruker.com/en/products-and-solutions/infrared-and-raman/ft-ir-routine-spectrometer/alpha-ii-compact-ft-ir-spectrometer.html

Different IR regions

MIR

 \rightarrow most commonly used

 \rightarrow Coincides with vibration

Samples and information gained

Information gained

- 1) Characterizing unknown substances
- 2) Studying the composition of known substances
- 3) Comparing samples and the changes in them

Information on the sample's:

- Chemical composition (functional groups)
- Molecular structure (bonds)
- Purity (comparison with pure substances)
- Concentration (quantitative analysis on intensities)
- Phases and structure (crystal forms)

Samples

Transmission FTIR

- Thin films and coatings
- Pellets
- Liquids (on quartz or glass cells)
- Solids transparent to IR radiation

ATR (Attenuated total reflectance)-FTIR

- Powders and fibers
- Soft and non-uniform surfaces (polymers)
- Liquid and semi-solid samples (gels, creams)

\rightarrow Eliminating the need for sample preparation

Interpretation of data

Spectrum

- Intensity as a function of wavenumber
 - Intensity \rightarrow Transmittance or absorbance
 - Wavenumber \rightarrow reciprocal centimetres from high to low

Functional groups

Advantages and limitations

Advantages

Data gathered from a large IR spectrum Offers both qualitative and quantitative analysis of substances

Highly sensitive and rapid analysis

Nondestructive

Minimal preparations and a broad range of samples

https://semilab.com/category/products/ftir-reflectometry

https://www.tribonet.org/wiki/infrared-spectroscopy/

https://rtilab.com/techniques/ftir-analysis/

https://www.youtube.com/watch?v=gEPUeUfMW4s

Limitations

Chemical composition analysis limited to mainly functional groups Water sensitivity can cause interference with analysis

2500

Wavenumber (cm⁻¹)

2000

1500

100

3000

3500

Possibility to spectral overlaps (impurities and complex samples)

Weak in detecting low absorbtions or detailed spatial features

https://byjus.com/chemistry/functional-groups/

https://www.edinst.com/atr-ftir-of-blood-serum-usinga-heated-atr-accessory/ N. Nieto et al. (2022) Pharmaceuticals 15(6):662

C.C. Gajjela et al. (2022)

Research examples

1 - Aim

Metal–Organic Frameworks

New s-Block Metal Pyridinedicarboxylate Network Structures through Gas-Phase Thin-Film Synthesis

Jenna Penttinen, Mikko Nisula, and Maarit Karppinen*^[a]

Synthesis and investigation of M-PDC materials

- Novel water-free structures were accomplished
- Insitu crystalline (Li-,Na-,K-) and amorphous(Mg-,Ca-,Sr-,Ba-) thin films
- Post-deposition water absorption behavior
- Post humidity treatment at RT followed by thermal annealing

Experimental

- ALD/MLD
- Precursors: Metal-thd complexes (Li,Na,K,Mg,Ca,Sr,Ba)
 3.5-PDC
 - 3,5-PDC

1 - Why FTIR

XRR→Film thickness SEM→morphologies GIXRD

-confirmed the amorphous/crystalline nature -change in structure depending on presence of water in films or not -structure analysis

> Not able to solve the crystals structure of new materials

Aalto University School of Chemical Engineering

FTIR was able to confim for unhydrated films:

- 1) K-3,5-PDC
 - → free COOH acid groups
 - \rightarrow Water absorption after synthesis
- 2) Anhydrous films ether bidentate bridging or bidentate chelatin coordination
- Participation of pyridyl-N in M-coordination or in H-bonding with H2O

hydrated films

- 1) Presence of water
- 2) Reversible water in-take/release behaviour

1 - Results

Table 1. Summary of the FTIR data for all thin-film samples and the 3,5-PDC precursor: symmetric and asymmetric carboxylate bands (and the corresponding Δ values) and the N-bond absorption values given in cm⁻¹; b stands for a broad peak, f for a free pyridyl nitrogen/carboxylic acid, m for a metal coordinated to the pyridyl-N or a carboxylate, and h for a water molecule having hydrogen bonding to the pyridyl-N or to a carboxylate.

-OH

Sample	Sym	Asym	Δ	N bond	
3,5-PDC	1304	1720	416 (f)	1421, 1602 (f)	
Li-PDC	1425	1571	146 (m)	1450, 1610 (m)	
	1390	1648	258 (m)		
Na-PDC	1417	1571	154 (m)	1454, 1614 (m)	
	1396	1646	250 (m)		
Na-PDC-H ₂ O	1404	1547	143 (m)	1436, 1602 (m)	-
	1371	1666	295 (h)		-
K-PDC	1403	1568	165 (m)	1442, 1607 (m)	
	1374	1632	258 (m)		
K-PDC-H₂O	1407	1567	160 (m)	1442, 1614 (m)	
	1371	1699	328 (h)		
Mg-PDC	1398 (b)	1569 (b)	171 (m)	1442, 1618 (m)	
Mg-PDC-H ₂ O	1382	1562	180 (m)	1446, 1610 (m)	
Ca-PDC	1386 (b)	1564 (b)	136 (m)	1454, 1609 (m)	
Ca-PDC-H ₂ O	1432	1557	125 (m)	1452, 1601 (h)	
	1389	1673	284 (h)		
Sr-PDC	1380 (b)	1556 (b)	129 (m)	1448, 1608 (m)	
Sr-PDC-H ₂ O	1423	1552	170 (m)	1454, 1596 (h)	
	1382	1614	232 (h)		
Ba-PDC	1376 (b)	1549 (b)	136 (m)	1448, 1601 (m)	
Ba-PDC-H ₂ O	1378	1547	169 (m)	1448, 1601 (h)	
Scho	ol of Chemic	al		······································	l,

Engineering

2 - Aim

Cite this: Chem. Commun., 2020, 56, 241

Received 17th September 2019, Accepted 27th November 2019

DOI: 10.1039/c9cc08904g

Amorphous-to-crystalline transition and photoluminescence switching in guest-absorbing metal–organic network thin films†

Amr Ghazy, ^[D]^a Muhammad Safdar, ^[D]^a Mika Lastusaari ^[D]^b and Maarit Karppinen ^[D]*^a

Research on novel amorphous metal-organic frameworks (aMOFs)

- No long-range order as in typical MOF materials
- Amorphous-to-crystalline transition and photoluminescence switching
- Applications on sensing, electronics, catalysis etc.

Experimental

- Neodymium terephtalate (Nd-TP) thin films deposited with ALD/MLD
- Precursors Nd(thd)3 and TPA
- Humidity and temperature treatment for the films

2 - Why FTIR

GIXRD confirmed the amorphous/crystalline nature

- As deposited films amorphous
- After humidity treatment crystalline

Aalto University School of Chemical Engineering

FTIR was able to confirm:

- 1) Nd-TP bond formation and the type of bonding mode
- 2) Water absorbtion in the crystal lattice after humidity treatment
- 3) Removal of crystal water by heating the watercontaining films
- 4) Reversible water in-take/release behaviour

2 - Results

- Repeated humidity/heating treatments for Nd-TP films
- FTIR measured after each step

References

References:

1) Attenuated Total Reflectance (ATR). Available at <u>https://www.bruker.com/en/products-and-solutions/infrared-and-raman/ft-ir-routine-spectrometer/what-is-ft-ir-spectroscopy/atr-attenuated-total-reflectance.html</u>

2) FT-IR or IR-Spectroscopy? Available at: <u>https://www.bruker.com/en/products-and-solutions/infrared-and-raman/ft-ir-routine-spectrometer/what-is-ft-ir-spectroscopy/difference-ir-vs-ftir.html</u>

3) Advantages and Disadvantages of FTIR Spectroscopy (2024). Available at: <u>https://www.chemlabgenius.com/advantages-and-disadvantages-of-ftir-spectroscopy/</u>

4) FT-IR Basics – Principles of Infrared Spectroscopy (2019). Available at: <u>https://www.youtube.com/watch?v=KRoWMB3AR3s</u>

Research examples:

1) J. Penttinen, M. Nisula, M. Karppinen, New s-bBlock Metal Pyridinedicarboxylate Network Structures trough Gas-Phase Thin-Film Synthesis, *Chem. Eur. J.* 25 (2019) 11466-11473.

2) A. Ghazy, M. Safdar, M. Lastusaari, M. Karppinen, Amorphous-to-crystalline transition and photoluminescence switching in guestabsorbing metal-organic network thin films, Chem. Commun. 56 (2020) 241-244.

Thank you!

