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Galois Representations

Solved exercises - Part 1

The following problems are from Lecture 1 of Fernando Gouvêa’s notes “Deformations of Galois
Representations”. These are the problems which were covered in the exercises sessions (some details
are left for you). We also include some theoretical observations concerning absolute Galois groups
and extension of valuations, Chebotarev’s theorem and representations over profinite rings.

Problem 1.1.

Check the details in this construction. Specifically, show that many non-constant sequences {an}
exist and that the conditions defining ψ are indeed compatible.

Solution.

The construction mentioned in the statement is the one carried out in the example right above
the problem, in Gouvêa’s notes.

The goal is to show there exist many non-constant sequences of integers {an} satisfying

an ≡ am (mod m) (1)

whenever m|n.
We will show that any sequence in Zp = lim←−k

Z/pkZ, the p-adic integers, can be used to construct

a sequence {an} satisfying (1). Since there are uncountably many p-adic integers (see Problem 1.2.),
we get uncountably many sequences {an}.

Let p be a rational prime, a0 = 0, ap ∈ Z/pZ and consider for every k ≥ 2, apk ∈ Z/pkZ such
that

apk+1 ≡ apk (mod pk). (2)

In practice, due to the compatibility condition (2), we are considering the p-adic integer given
by the sequence {apk}. Note that the sequence {apk} is not enough for our purpose, since it only
includes indices corresponding to p-powers. To “complete” the sequence, set an = 0 if 0 < n ≤ p−1,
an = ap if p ≤ n ≤ p2 − 1, an = ap2 if p2 ≤ n ≤ p3 − 1, and so on. In sum, let

an =

{
0 if 0 ≤ n ≤ p− 1

apk if pk ≤ n ≤ pk+1 − 1 ∀k ≥ 1.

The completed sequence looks like

(0, . . . , 0, ap, . . . , ap, ap2 , . . . , ap2 , ap3 , . . .).

Let us check that this sequence satisfies condition (1). Consider non-negative integers m,n such
that m|n. We consider four separate cases:

(i) Suppose both m and n are p-powers. Since m|n, m = pk1 and n = pk2 for some k1, k2 ≥ 1
with k1 ≤ k2. By construction of {an} and condition (2), an = apk2 ≡ apk1 ≡ am (mod m).

(ii) If n is a p-power but m is not, then m does not divide n, so we discard this case.
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(iii) Suppose n is not a p-power but m is. Then m = pk for some k ≥ 1 and n = pkv for some
integer v which is not a p-power. In this case, an = apk = am and so an ≡ am (mod m).

(iv) The case where n and m are not p-powers can be reduced to case (i). Check it.

It remains to verify that the conditions defining ψ are compatible with such a sequence {an}.
Recall ψ is defined as the automorphism of F = Fp satisfying ψ|Fpn

= ϕan for every n ≥ 1, where ϕ
denotes the Frobenius automorphism. Note that Fpm ⊆ Fpn implies that m|n, which in turn implies
that an ≡ am (mod m) (by construction of {an}). Hence, an = am +mt for some integer t. In that
case, for every x ∈ Fpm ⊆ Fpn ,

ϕan(x) = xp
an

= xp
am+mt

= xp
ampmt

= (xp
am

)p
mt

= xp
am

= ϕam(x),

which shows ψ is well-defined.

Problem 1.2.

How big is GFp? For example, is it a countable set?

Solution.

We start by showing that Zp is uncountable. Consider the map

Zp → [0, 1]∑
k≥0

akp
k 7→

∑
k≥1

akp
−k.

This is well-defined since every element in Zp has a unique p-adic expansion of the form
∑

k≥0 akp
k

with 0 ≤ ak ≤ p− 1. It is a surjective map, since for every α ∈ [0, 1] with α =
∑

k≥1 akp
−k (basis p

expansion of α), 0 +
∑

k≥1 akp
k is a p-adic integer mapping to α. Hence, since [0, 1] is uncountable,

Zp is also uncountable.
Now consider the map

Zp = lim←−
k

Z/pkZ→ GFp

{apk} 7→ ψ,

where ψ is given as in Problem 1.1. This map is injective (check it) and so since Zp uncountable,
GFp

is also uncountable.

Problem 1.3.

Let F/K be an infinite Galois extension, and let G be the group of automorphisms of F which
induce the identity on K. For each finite Galois subextension K ′/K let G(F/K ′) denote the normal
subgroup of G consisting of all automorphisms which induce the identity on K ′. Define a topology
on G by defining a basis of neighborhoods of each σ ∈ G to be the set of all cosets σG(F/K ′), where
K ′ runs through all finite Galois extensions of K. Show that this yields the same group and the
same topology as in the definition above.
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Solution.

The “definition above” refers to Definition 1.1. Let us recall it. For each finite Galois subextension
K ′/K of an infinite Galois extension F/K, we consider the Galois group G(K ′/K) and, given two
finite subextensions K ′ ⊆ K ′′, we consider the restriction homomorphism

ResK′,K′′ : G(K ′′/K)→ G(K ′/K). (3)

This defines an inverse system of groups and we define the Galois group of F over K as

G(F/K) := lim←−
K′/K

G(K ′/K) (4)

with the natural profinite topology.
The group G introduced in the problem statement is given by

G := {σ ∈ Aut(F ) | σ|K = id} , (5)

with the topology given by the described basis of neighborhoods.
The purpose of the problem is to show that (i) G ∼= G(F/K) and (ii) the profinite topology over

G(F/K) coincides with the topology given by the basis of neighborhoods described in the statement.

(i) We have an explicit construction for the inverse limit (4) as a subset of the cartesian product
containing the “coherent” sequences (see Problem 1.36.):

G(F/K) = {(σK′)K′∈I | ResK′,K′′(σK′′) = σK′ whenever K ′ ⊆ K ′′} ,

where the index set I is the set of all finite Galois subextensions K ′ over K. Consider the map

ψ : G→ G(F/K)

σ 7→ (σ|K′)K′∈I .

We will show that this is an isomorphism of groups, and hence G ∼= G(F/K).

First, note that for every σ ∈ G and every finite Galois (and hence normal) subextension
K ′/K, σ|K′ is an automorphism of K ′ which induces the identity on K. Moreover, normality
of K ′/K ensures that ResK′,K′′(σK′′) = σK′ whenever K ′ ⊆ K ′′. So ψ has indeed values in
G(F/K). It is also clear that ψ is a well-defined group homomorphism. We check injectivity
and surjectivity of ψ.

• Injectivity. Let σ1, σ2 ∈ G such that ψ(σ1) = ψ(σ2), that is, σ1|K′ = σ2|K′ for every finite
Galois subextension K ′/K. For every α ∈ F , there exists some finite Galois subextension
K ′/K such that α ∈ K ′. In that case,

σ1(α) = σ1|K′(α) = σ2|K′(α) = σ2(α).

This shows that σ1(α) = σ2(α) for all α ∈ F and so σ1 = σ2.

• Surjectivity. Let σ = (σK′)K′∈I such that σK′ ∈ G(K ′/K) and ResK′,K′′(σK′′) = σK′

whenever K ′ ⊆ K ′′. For every α ∈ F , there exists some finite Galois subextension
K ′/K such that α ∈ K ′. So define σ : F → F by putting σ(α) = σK′(α). The
restriction compatibility conditions make σ a well-defined map and it is clear that it is
an automorphism of F inducing the identity on K. Hence σ ∈ G and ψ(σ) = σ.
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(ii) Denote the basis of neighborhoods for G by B1. We show that the topologies of G and G(F/K)
coincide. To do that, we will provide a subbasis B2 for the topology of G(F/K) and show that
ψ(B1) = B2.
G(F/K) has the product topology on

∏
K′∈I G(K

′/K) restricted to the set where

ResK′,K′′(σK′′) = σK′

whenever K ′ ⊆ K ′′. The product topology has as a subbasis consisting of elements

{(σK′)K′∈I | σK∗ = σ0
K∗}

where K∗ ∈ I and σ0
K∗ ∈ G(K∗/K). Thus the topology on G(F/K) has a subbasis B2

consisting of elements

{(σK′)K′∈I | σK∗ = σ0
K∗} ∩G(F/K) (6)

(by definition of subspace topology). Open sets in G(F/K) are then unions of finite intersec-
tions of sets of this type.

Now, given g ∈ G and a neighborhood gG(F/K∗) ∈ B1 of g (the extension K∗/K is fixed and
is such that g ∈ G(K∗/K)), we have that

ψ(gG(F/K∗)) = {ψ(gσ) | σ ∈ G(F/K∗)}
= {(gσ|K′)K′∈I | σ ∈ G(F/K∗)} . (7)

We verify that (7) is a set of the form (6). It is obvious that (gσ|K′)K′∈I ∈ G(F/K) simply
because ψ takes values in G(F/K). Moreover, every σ ∈ G(F/K∗) satisfies σ|K∗ = id and
consequently gσ|K∗ = g ∈ G(K∗/K). So if we take σ0

K∗ = g, we can realize (7) in the form of
(6). This shows that ψ(B1) ⊆ B2.
To show the reverse inclusion, consider the basis element U = {(σK′)K′∈I | σK∗ = σ0

K∗} ∩
G(F/K) ∈ B2. We show that for every sequence (σK′)K′∈I in U , there exists a unique
τ ∈ G(F/K∗) such that ψ(σ0

K∗τ) = (σK′)K′∈I , concluding that U ∈ ψ(B1) and hence

B2 ⊆ ψ(B1).

Note that restricting {(σK′)K′∈I | σK∗ = σ0
K∗} to G(F/K) is the same as imposing that

ResK′,K′′(σK′′) = σK′

whenever K ′ ⊆ K ′′. Then, if we define τ ∈ G(F/K∗) by τ |K′ = (σ0
K∗)−1 ◦ σK′ , we get a

well-defined map satisfying

ψ(σ0
K∗τ) = ((σK′)K′∈I)

(check the details). This shows the pretended result.

Problem 1.4.

Show that G(F/K) is Hausdorff, compact, and totally disconnected.

Solution.
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Let us recall the topological concepts mentioned in the statement. A topological space X is
Hausdorff (or T2) if for all x, y ∈ X such that x ̸= y there exist neighborhoods Ux of x and Uy of y
such that Ux∩Uy = ∅. The space X is compact if all open coverings of X admit a finite subcovering.
X totally disconnected if its only connected components are the singletons.

We show these three properties are satisfied by G(F/K). Recall G(F/K) is endowed with a
subspace topology of the product topology on P =

∏
K′∈I G(K

′/K) (see part (ii) of the previous
problem for more details). Here, each G(K ′/K) has the discrete topology.

• G(F/K) is Hausdorff and totally disconnected. This follows from some results in general
topology. Indeed, discrete spaces such as G(K ′/K) are both Hausdorff and totally discon-
nected. The product of Hausdorff spaces is Hausdorff and the product of totally disconnected
spaces is also totally disconnected. Hence P is Hausdorff and totally disconnected. Finally,
the Hausdorff and totally disconnected properties are also inherited by subspaces, so G(F/K)
is Hausdorff and totally disconnected.

• G(F/K) is compact. The fact that the groups G(K ′/K) are discrete and finite implies that
they are compact. Moreover, the product of compact spaces is compact, so P is compact.
We want to conclude that the subspace G(F/K) is also compact. But compactness is only
inherited by closed subspaces, so let us show that G(F/K) is closed in P . The projection maps

πK′ : P → G(K ′/K) (8)

are continuous. Hence π−1
K′ (G(K ′/K)) is closed for all K ′ ∈ I since G(K ′/K) is closed. But

G(F/K) =
⋂

K′∈I

π−1
K′ (G(K

′/K))

(check this). Since intersections of closed sets are closed, we get that G(F/K) is closed. We
conclude that G(F/K) is a closed subspace of the compact P and thus compact as well.

Problem 1.5.

Let G be a topological group. Show that all open subgroups of G are also closed. If G is compact,
show that all open subgroups are of finite index in G. Conversely, show that a closed subgroup of
finite index in a topological group G is open.

Solution.

Let us divide this problem in three parts.

a) All open subgroups of G are also closed. Let H ⩽ G be open. To show H is closed, we show
that G \H is open. Now,

G \H =
⋃

g∈G\H

gH,

where the cosets gH are open (check this). Since unions of open sets are open, we conclude
that G \H is open.

b) If G is compact, then all open subgroups are of finite index in G. Assume G is compact and
let H ⩽ G be open. We can write G as

G =
⋃
g∈G

gH,

5



MS-EV0028 Galois Representations, V/2024 Blanco / Costa

where the gH are open, since H is open. By compactness, there exist finitely many g1, . . . , gn
such that

G =

n⋃
i=1

giH.

But this implies that G/H = {g1H, . . . , gnH} and so [G : H] ≤ n <∞.

c) A closed subgroup of finite index is open. Let H ⩽ G be a closed subgroup of finite index. We
show that G \ H is closed. Suppose G/H = {g1H, . . . , gnH} and without loss of generality,
assume g1 is the identity of G. Then,

G \H =

n⋃
i=2

giH.

Since H is closed, giH is closed for all i = 2, . . . , n. Finite unions of closed sets are closed and
hence G \H is closed.

Remark. A profinite topological group, as G(F/K) in Definition 1.1., is compact. Then H ⩽ G is
open if and only if H is closed and of finite index. This is an important characterization of open
subgroups of profinite groups.

Problem 1.6.

Prove the theorem.

Solution.

The problem statement refers to Theorem 1.1., which gives a generalization of the Galois corre-
spondence for infinite Galois extensions F/K. Let us state the theorem first:

Let F/K be a (finite or infinite) Galois extension. The map

K ′ 7→ G(F/K ′)

defines a bijective inclusion-reversing correspondence between subextensions K ′/K and closed sub-
groups of G(F/K). The inverse correspondence is given by

H 7→ FH ,

where, as usual, FH denotes the subfield of F consisting of those elements which are fixed by every
element of H.

In particular, open subgroups G(F/K ′) correspond to finite subextensions of F/K. Indeed,
G(F/K ′) is open in G(F/K) if and only if it is also closed and has finite index (since G(F/K) is
a profinite group). In this case, and only in this case, G(K ′/K) is finite, since by the finite Galois
correspondence

|G(K ′/K)| = [G(F/K) : G(F/K ′)].

Hence G(F/K ′) is open if and only if K ′/K is finite.
Let us prove the theorem. Let F/K be a Galois extension. We starting by checking that the

map

K ′ 7→ G(F/K ′) (9)
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is well-defined in the sense that for every subextension K ′/K (not necessarily finite), G(F/K ′) is a
closed subgroup of G(F/K). Consider a finite subset S ⊆ K ′ and the stabilizer

G(F/K)S = {σ ∈ G(F/K) | σ(s) = s for all s ∈ S}

=
⋂
s∈S

{σ ∈ G(F/K) | σ(s) = s}

=
⋂
s∈S

G(F/K(s)).

Note that every set G(F/K(s)) is a basis element for G(F/K) in the sense of Problem 1.3., since
the extension K(s)/K is finite and Galois. Hence G(F/K(s)) is open. Since S is finite, we have
G(F/K)S realized as a finite intersection of open sets, making it an open set. By Problem 1.5.,
G(F/K)S is closed as well. We now show that

G(F/K ′) =
⋂

S⊆K′ finite

G(F/K)S . (10)

Given σ ∈ G(F/K ′) and S ⊆ K ′, σ(x) = x for all x ∈ K ′ so in particular for all s ∈ S. This shows
that the LHS is contained in the RHS. If σ is in the RHS, then σ(α) = α for all α ∈ S, for all finite
S ⊆ K ′. Given α ∈ K ′, there exists a finite subset S ⊆ K ′ such that α ∈ S. Hence σ(α) = α. So
σ fixes all elements of K ′, that is, σ ∈ G(F/K ′). This shows (10). Therefore, we have G(F/K ′)
realized as an intersection of closed sets, which implies that G(F/K ′) is closed.

The next step is to show that the map in (9) really induces a bijection between subextensions
K ′/K and closed subgroups of G(F/K) and has inverse given by

H 7→ FH .

In practice, we ought to show that

G(F/FH) = H (11)

for all closed subgroups H of G(F/K) and

FG(F/K′) = K ′ (12)

for all subextensions K ′/K.
Consider a subgroup H ⩽ G(F/K) (not necessarily closed). We show that G(F, FH) = H,

where H denotes the topological closure of H. Since G(F/FH) is closed (as shown right above),
H ⊆ G(F/FH). The other inclusion requires more work. Let σ ∈ G(F/K) \ H. By definition of
closure and since {σG(F/E) | E/K is finite} forms a system of neighborhoods of σ (we are again
using the topology described in Problem 1.3.), there exists some finite extension E/K such that
σG(F/E) ∩H = ∅. In particular, if we consider the restriction

ϕ : G(F/K)→ G(E/K)

τ 7→ τ |E ,

then σ|E /∈ ϕ(H) (check it). Hence, there exists some

γ ∈ Eϕ(H) = {x ∈ E | τ(x) = x for all τ ∈ ϕ(H)}
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which is not fixed by σ. Note that Eϕ(H) ⊆ FH (check it) and so σ does not fix the element γ of
FH . Therefore σ /∈ G(F/FH) or in other words, σ ∈ G(F/K) \ G(F/FH). Recall we started with
the assumption that σ ∈ G(F/K) \H and so we get G(F/FH) ⊆ H.

Having proven that G(F/FH) = H, we can directly conclude that if H is closed (i.e., H = H),
then

G(F/FH) = H.

This proves (11).
To prove (12), consider a subextension K ′/K. Since F/K is a Galois extension, F/K ′ is also

Galois. Thus, we get directly that FG(F/K′) = K ′.
Check that the bijection is inclusion-reversing.

Problem 1.8.

Let G1 and G2 be profinite groups. Show that a continuous injective homomorphism G1 → G2 is
an isomorphism from G1 onto a closed subgroup of G2.

Solution.

Since f is continuous and G1 is compact, f(G2) is compact. Now, G2 is Hausdorff since it is
profinite and hence f(G1), being a compact subspace of the Hausdorff space G2, is closed. Finally,
since f is injective, its kernel is trivial, and so by the first isomorphism theorem, f induces an
isomorphism of G1 onto f(G1).

Problem 1.10.

Show that the natural map Ẑ→
∏

p Zp is an isomorphism.

Sketch of solution.

Recall
Ẑ = lim←−

n

Z/nZ,

where the limit is obtained from the reduction homomorphisms Redm,n : Z/nZ → Z/mZ, defined
whenever m|n. Let m,n ≥ 1 such that m|n. Then the prime factorizations of m and n are of the
form

n = pα1
1 . . . pαr

r

m = p
βi1
i1

. . . p
βis
is

where p1, . . . , pr and pi1 , . . . , pis are rational primes such that {pi1 , . . . , pis} is a subset of {p1, . . . , pr}
and βij ≤ αij for all j = 1, . . . , s.

In more generality, we can define the directed set

I = {((p1, . . . , pr), (α1, . . . , αr)) | pi is prime, αi ≥ 1},

where ((pi1 , . . . , pis), (βi1 , . . . , βis)) ≤ ((p1, . . . , pr), (α1, . . . , αr)) if {pi1 , . . . , pis} is a subset of {p1, . . . , pr}
and βij ≤ αij for all j = 1, . . . , s. This allows us to define an inverse system given by the groups

Z/pα1
1 Z× . . .× Z/pαr

r Z

8
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and the natural homomorphisms

Z/pα1
1 Z× . . .× Z/pαr

r Z→ Z/pβi1
i1

Z× . . .× Z/pβis
is

Z

given by reduction.
Consider the factorizations of n and m above, by the Chinese Remainder Theorem, we have that

Z/nZ ∼= Z/pα1
1 Z× . . .× Z/pαr

r Z

and

Z/mZ ∼= Z/pβi1
i1

Z× . . .× Z/pβis
is

Z.

Hence we obtain the following commutative diagram

Z/nZ Z/pα1
1 Z× . . .× Z/pαr

r Z

Z/mZ Z/pβi1
i1

Z× . . .× Z/pβis
is

Z

∼=

∼=

where the vertical arrows correspond to the restriction homomorphisms. This induces an iso-
morphism

Ẑ = lim←−
n

Z/nZ ∼= lim←−
((p1,...,pr),(α1,...,αr))

Z/pα1
1 Z× . . .× Z/pαr

r Z.

In turn, one get check that

lim←−
((p1,...,pr),(α1,...,αr))

Z/pα1
1 Z× . . .× Z/pαr

r Z ∼= lim←−
i≥1

lim←−
ni

Z/pn1
1 Z× Z/pn2

2 Z× . . .

∼=
∏
p

Z/pZ.

We conclude that

Ẑ ∼=
∏
p

Z/pZ.

Problem 1.12.

Suppose G is profinite and M has the discrete topology. For each subgroup H ⊆ G, write MH for
the set of elements of M which are fixed by every element of H. Show that the map G×M → M
is continuous if and only if we have

M =
⋃
H

MH ,

where H runs through all the open subgroups of G.

9
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Solution.

“⇒”
Suppose the map φ : G ×M → M is continuous (we denote the map by φ but we sometimes

write σm instead of φ(σ,m)). Clearly
⋃

H MH ⊆M . Now, given m ∈M , the stabilizer at m,

Gm = {σ ∈ G | σm = m}

is open. Let us see why. Note that the set {(σ, n) ∈ G ×M | σn = m} = φ−1({m}) is open with
respect to the product topology, since {m} is open in M and φ is continuous. Hence, there exist
open subgroups of Hi ⊆ G and nj ∈M such that

{(σ, n) ∈ G×M | σn = m} =
⋃
i,j

Hi × {nj}.

In that case, for all σ ∈ Hi, σnj = m. Note that the identity map σ = id satisfies σm = m and so
the pair (id,m) ∈ Hi1 × {nj1} for some i1, j1. But this implies nj1 = m and so

Hi1 × {nj1} = Hi1 × {m} = {(σ,m) ∈ G× {m} | σm = m}.

This implies Hi1 = Gm and so Gm is open. Finally, we note that m ∈ MH for H = Gm since
σm = m for all σ ∈ Gm. Hence m ∈

⋃
H MH where H through the open subgroups of G.

“⇐”
Suppose

M =
⋃
H

MH ,

where H runs through all the open subgroups of G. We have to check that for every m ∈ M ,
φ−1({m}) is open in the product topology on G×M . Let m ∈M . Then,

φ−1({m}) = {(σ, n) ∈ G×M | σn = m}

=
⋃

n∈M
∃σ∈G

σ(n)=m

⋃
σ∈G

σ(n)=m

{(σ, n)}.

Now, since

M =
⋃
H

MH ,

there exists an open subgroup H ⊆ G such that m ∈MH , that is, τ(m) = m for all τ ∈ Hn. In that
case, for all σ ∈ G such that σ(n) = m, we have that σ(n) = τ(m) =⇒ (τ−1σ)(n) = m. Thus,

φ−1({m}) =
⋃

n∈M
∃σ∈G

σ(n)=m

⋃
σ∈G

σ(n)=m

{(σ, n)}

=
⋃

n∈M
∃σ∈G

σ(n)=m

⋃
σ∈G

σ(n)=m

Hσ × {n}.

Note that each Hσ is open and each {n} is open. Hence φ−1({m}) is open.
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Extending valuations from Q to Q

Given a prime p and n ∈ Q, we can always write n = pru for some r ≥ 0 and some rational number
u not divisible by p. Then, we define a valuation vp on Q by vp(n) = r.

We want to see how we can extend vp to an algebraic closure Q of Q. In order to do this, for all
number fields L ⊆ Q, choose a prime ideal PL over p (that is, PL|(p)OL) such that if F ⊆ L then
PL ∩ F = PF (we are using the axiom of choice). Fix this sequence {PL}L where L runs through
all number fields L ⊆ Q.

Now, given α ∈ Q and a number field L ⊆ Q containing α (for instance, L = Q(α)), we have
that

(α)OL = PaL

L J,

where aL ≥ 0 and J corresponds to the rest of the factorization of (α) by prime ideals in Q(α). In
this case, we define the valuation vp : Q→ Z as

vp(α) =
aL

e(PL, p)
,

where e(PL, p) denotes the ramification index of PL over p (that is, e(PL, p) is the power associated
to the prime PF in the factorization of (p)OL).

We need to show that vp is (i) well-defined, (ii) a valuation in Q and (iii) an extension of vp.

(i) Showing that vp is well-defined sums up to verifying that it does not depend on the chosen
field L. Indeed, given two number fields L,F ⊆ Q containing α ∈ Q, it holds that the number
field L ∩ F ⊆ Q also contains α. Since L ∩ F ⊆ L,F , by construction of the sequence {PL}L,
we get that

PL ∩ (L ∩ F ) = PL∩F = PF ∩ (L ∩ F ).

This implies that PL = PF and by uniqueness of prime factorization at the level of ideals, we
get that aL = aF and so vp is well-defined.

(ii) We will show that vp(αβ) = vp(α) + vp(β). We leave the second property of valuations to you
(vp(α+ β) ≥ min{vp(α), vp(β)}, with equality if vp(α) ̸= vp(β)).

Let α, β ∈ Q. Then, α, β, αβ ∈ L = Q(α, β), so if

(α)OL = Paα

L . . . ,

(β)OL = P
aβ

L . . .

and (αβ)OL = P
aαβ

L . . .

we need to show that

aα + aβ = aαβ .

This is follows directly from

(αβ)OL = (α)OL(β)OL = Paα

L P
aβ

L . . . = P
aα+aβ

L . . .

and the fact that factorization is unique at the level of ideals.

11
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(iii) Let n ∈ Q such that n = pru as described in the beginning. We want to check if vp(n) = vp(n),
that is, if r = aL/e(PL, p). Suppose

(p)OL = P
e(PL,p)
L J

for some ideal J not divisible by PL. Then,

(n)OL = (p)rOL(u)

= P
re(PL,p)
L Jr(u)

where Jr(u) is not divisible by p. Hence,

vp(n) =
re(PL, p)

e(PL, p)
= r = vp(n).

How to embed GQp in GQ?

Recall GQp
= Gal(Qp/Qp) and GQ = Gal(Q/Q) for some fixed algebraic closures Qp and Q. We

start by noting that the fact that vp extends to Q implies that the p-adic norm | · |p also extends to
Q. Furthermore, Q is (topologically) dense in Qp under | · |p.

Taking this into account, we can embed GQp
in GQ under the restriction map

ι : GQp
↪→ GQ

σ 7→ σ|Q.

We should note the map above does not depend on the chosen algebraic closures. Indeed, given

two algebraic closures of Q, say Q1
and Q2

, there exists τ ∈ GQ such that for any number fields

F1 ⊆ Q1
and F2 ⊆ Q1

, τ(PF1
) = PF2

. In that case, the valuations v1p and v2p associated to Q1
and

Q2
, respectively, are related by

v1p ◦ τ = v2p,

which implies

GQp

1 ∼= τ−1GQp

2
τ.

So if we consider a Galois group G∗
Qp

= G(Qp
∗
/Qp) where Qp

∗
is a different algebraic closure

than the one fixed at the beginning, we can simply map σ ∈ G∗
Qp

first to τ−1στ ∈ GQp , and only
after apply ι, obtaining still an embedding G∗

Qp
↪→ GQ.

Chebotarev’s Theorem

Chebotarev’s theorem, Theorem 1.8., states the following:

Let K/Q be a Galois extension that is unramified outside a finite set S of primes. Let T be a
finite set of primes containing S. For each prime p /∈ T , there is a well-defined Frobenius conjugacy
class [ϕp] ⊆ G(K/Q). The union of all these Frobenius conjugacy classes is dense in G(K/Q).

12
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Let us make some general observations. First, the union of all the Frobenius conjugacy classes
being dense in G(K/Q) means that G(K/Q) is the closure (under the profinite topology) of⋃

p/∈T

[ϕp].

Hence, by definition of closure, this means that for all σ ∈ G(K/Q) and for every open neighborhood
σN of σ (N = G(K/K ′) for some finite subextension K ′/K), we have

σN ∩
⋃
p/∈T

[ϕp] ̸= ∅,

that is, there exists p /∈ T such that

σN ∩ [ϕp] ̸= ∅.

This implies there exists some η ∈ N such that

ση ∈ [ϕp] = ϕpG(K/Q)ϕ−1
p . (13)

Problem 1.29.

What does this say when K is a finite extension of Q?

Sketch of solution.

The problem refers to Chebotarev’s theorem. LetK be a finite Galois extension of Q and consider
σ ∈ G = G(K/Q) and its conjugacy class [σ] = σGσ−1. Denote

PK/Q(σ) = {p ⊆ OK | [ϕp] = [σ]},

and consider the density of PK/Q(σ) in G,

d(PK/Q(σ)) :=
|PK/Q(σ)|
|G|

.

Then,

d(PK/Q(σ)) =
|[σ]|
|G|

, (14)

that is, the Frobenius elements are uniformly distributed over conjugacy classes. Use Chebotarev’s
theorem, namely (13), to show (14).

Representations as continuous modules over the group ring

We discuss the construction carried out in the end of Lecture 1 of F. Gouvêa’s notes (starting in
Definition 1.3.).

Given a topological ring A, a finite set of primes S and a positive integer n, a Galois representation
(defined over A, unramified outside S) is a continuous homomorphism

ρ : GQ,S → GLn(A).

13



MS-EV0028 Galois Representations, V/2024 Blanco / Costa

Two Galois representations are said to be equivalent if they differ only up to conjugation by a matrix
in GLn(A).

Given a representation ρ, we can consider the free A-module M of rank n and endow it the
continuous action

GQ,S ×M →M

(g,m) 7→ ρ(g)m.

Conversely, given a free A-moduleM of rank n with such a continuous action of GQ,S , we can obtain
a representation ρ by choosing a basis for M ∼= An. In this case, changing the basis of M changes ρ
to an equivalent representation.

MORAL: Giving (up to equivalence) a representation of GQ,S over A of dimension n is the same

as giving a free A-module of rank n with a continuous action of GQ,S

Now suppose we have a free A-module M of rank n with a continuous action of a profinite group
G and additionally

M = lim←−
H

MH , (15)

where H runs through all open normal subgroups of G.
The completed group ring A[[G]] is defined as

A[[G]] := lim←−
H

A[G/H],

where H runs through all open normal subgroups of G and A[G/H] is the usual group ring of the
finite group G/H over A (recall that H open in the profinite topology implies that H has finite
index). If you are not familiar with the group ring, you can think of it as the group consisting of
formal linear combinations of elements of G/H with coefficients in A:

A[G/H] =
{∑

g∈G

aggH
}
.

The inverse system defining A[[G]] is given by the induced homomorphisms A[G/H1] → A[G/H2]
whenever H1, H2 are open normal subgroups of G with H1 ↪→ H2.

The fact that G acts continuously on M and both {MH}H and {A[G/H]}H are inverse systems
implies that A[G/H] acts continuously on MH for every open normal subgroup H of G (check this).
Hence, by compatibility of the inverse systems, we get that A[[G]] acts continuously on M , that is,
M is a continuous A[[G]]-module. In conclusion, given a free A-module M of rank n given by the
inverse limit (15), with a continuous action of G, M can be seen as a continuous A[[G]]-module. In
fact, if A is not only a topological ring but a profinite ring, then we automatically have (15), see
Problem 1.14.

MORAL: If A is a profinite ring, giving (up to equivalence) a representation of G over A

is the same as giving a continuous A[[G]]-module M which is finite and free as an A-module

Furthermore, given a representation

ρ : G→ GLn(A)

14



MS-EV0028 Galois Representations, V/2024 Blanco / Costa

defined over a profinite ring A, we can extend it by linearity to A[[G]] and get a continuous homo-
morphism of A-algebras

A[[G]]→ Mn(A).

Conversely, given such an homomorphism, we can restrict it to G to obtain a representation as
above.
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