

We cover the problems from Lecture 2 of Fernando Gouvêa's notes "Deformations of Galois" Representations" which were solved (or partially solved) in class. We leave some simple details for you.

Problem 2.1.

Show that the p-Frattini quotient of Π exists and that it is the image of a surjective continuous homomorphism from $\Pi^{(p)}$.

Hints.

Consider $\Pi/p\Pi$ and use Zorn's lemma.

Problem 2.3.

Prove that objects of C are pro-objects of \mathcal{C}^0 . Specifically, prove that if R is a complete noetherian local ring with maximal ideal m, then for every n the quotient R/\mathfrak{m}^n is an object in \mathcal{C}^0 , and R is the inverse limit of the R/\mathfrak{m}^n .

Solution.

Let R be an object in C, that is, a complete noetherian local ring. Let \mathfrak{m} be the maximal ideal of R. Recall that the objects in \mathcal{C}^0 are artinian local rings, where artinian means that all descending chains of ideals stabilizes. We aim at showing that R is the inverse limit of R/\mathfrak{m}^n , where for every $n, R/\mathfrak{m}^n$ is an artinian local ring.

The fact that R is complete implies directly that it is the inverse limit of R/\mathfrak{m}^n . Hence, it remains to show that, for every n, R/\mathfrak{m}^n is an artinian local ring. It is clearly local with maximal ideal $\mathfrak{m}/\mathfrak{m}^n$. To see that it is artinian, we note that the only descending chains of ideals in R/\mathfrak{m}^n are of the form

$$
\mathfrak{m}^k/\mathfrak{m}^n \supseteq \mathfrak{m}^{k+1}/\mathfrak{m}^n \supseteq \mathfrak{m}^{k+2}/\mathfrak{m}^n \supseteq \ldots,
$$

where $k < n$. But

 $\mathfrak{m}^n/\mathfrak{m}^n = \{0\}$

and so the chain stabilizes.

Problem 2.6.

Show that any coefficient ring R in C carries a canonical $W(k)$ algebra structure. (That is, show that every such R has a unique coefficient ring homomorphism $W(k) \to R$).

Solution.

We solved this exercise only for the particular case $k = \mathbb{F}_p$ for some prime p. In that case $W(k) = \mathbb{Z}_p$. So we will show that every coefficient ring R over $\hat{k} = \mathbb{F}_p$ has a unique coefficient ring homomorphism $\mathbb{Z}_p \to R$.

By definition of coefficient ring over $k = \mathbb{F}_p$, we have that

$$
R/\mathfrak{m}\cong \mathbb{F}_p
$$

and

$$
R=\varprojlim_n R/\mathfrak{m}^n.
$$

Consider the unique ring homomorphism $\iota : \mathbb{Z} \to R$ (the one taking $1 \in \mathbb{Z}$ to the unity of R). Let (n) be the ideal of Z satisfying $\iota(n) = \mathfrak{m}$. Then ι induces a ring homomorphism $\mathbb{Z}/(n) \to R/\mathfrak{m} \cong \mathbb{F}_n$. For this to be a ring homomorphism, we need to have $(n) = (p)$, and so $\iota(p) = \mathfrak{m}$.

In that case, for every $n \geq 1$, ι induces a unique ring homomorphism

$$
\mathbb{Z}/p^n\mathbb{Z} \to R/\mathfrak{m}^n.
$$

Moreover, this system of homomorphisms induces a unique ring homomorphism

$$
\varprojlim_n \mathbb{Z}/p^n\mathbb{Z} \to \varprojlim_n R/\mathfrak{m}^n,
$$

where both the inverse systems defining the inverse limits are given by the reduction homomorphisms $\mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^k\mathbb{Z}$ and $R/\mathfrak{m}^n \to R/\mathfrak{m}^k$, whenever $k|n$. Note that the domain of the last homomorphism coincides with \mathbb{Z}_p and the codomain coincides with R. Note furthermore that by definition of ι the map takes (p) to a subset of \mathfrak{m} (check this), and so it is a coefficient ring homomorphism. We have thus obtained a unique coefficient ring homomorphism

$$
\mathbb{Z}_p \to R.
$$

Problem 2.7.

Show that in fact every coefficient ring is the quotient of a power series ring in several variables with coefficients in $W(k)$.

Sketch of solution.

This result is called the Cohen structure theorem. As in Problem 2.6., we consider only the particular case $k = \mathbb{F}_p$ and $W(k) = \mathbb{Z}_p$. So we need to show that

$$
R \cong \mathbb{Z}_p[[x_1,\ldots,x_n]]/I
$$

for some variables x_1, \ldots, x_n and an ideal $I \subseteq R$.

Since R is a coefficient ring, it is noetherian. In particular, its maximal ideal $\mathfrak m$ is finitely generated, say $\mathfrak{m} = (y_1, \ldots, y_n)$. From Problem 2.6., there exists a unique coefficient ring homomorphism

$$
\iota:\mathbb{Z}_p\to R.
$$

So consider the ring homomorphism

$$
\psi: Z_p[[x_1,\ldots,x_n]] \to R
$$

obtained by extending (by linearity)

$$
\psi(x_k) = y_k \text{ for all } k = 1, ..., n;
$$

$$
\psi(\alpha) = \iota(\alpha) \text{ for all } \alpha \in \mathbb{Z}_p.
$$

You should check this is a well-defined ring homomorphism. We show that ψ is surjective. Given $\beta \in R$, either $\beta \in \mathfrak{m}$ or $\beta \notin \mathfrak{m}$. If $\beta \in \mathfrak{m}$, then there exists $x \in (x_1, \ldots, x_n)$ such that $\psi(x) = \beta$ (check this). If $\beta \notin \mathfrak{m}$ then $\beta \in R^*$ (units of R) and so there exists $\alpha \in \mathbb{Z}_p$ such that $\iota(\alpha) = \beta$ (check this). Hence, if we consider $I = \ker(\psi)$, the first isomorphism theorem gives us

$$
R \cong Z_p[[x_1,\ldots,x_n]]/I.
$$