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Abstract

In recent years, the utilization of microphone array systems has surged
across diverse fields ranging from telecommunications to audio recording and
speech recognition. These systems, comprising multiple microphones arranged
strategically, offer enhanced capabilities in capturing sound from different di-
rections and spatially localizing sound sources. Central to the efficacy of
these systems is the synthesis of microphone array directional patterns, which
dictates the spatial sensitivity profile of the array. This paper presents a
comprehensive review of the synthesis techniques employed in shaping these
directional patterns, leveraging mathematical methodologies and advanced
signal processing algorithms. The synthesis aims to optimize the array’s re-
sponse, enhancing sensitivity to desired sound sources while mitigating inter-
ference from noise and undesired sources. With the examination of existing
methodologies and emerging trends, this paper elucidates the significance of
directional pattern synthesis in augmenting the performance and adaptability
of microphone array systems.

1 Introduction

Microphone arrays consist of multiple microphones working in concert. They have
become indispensable tools in various fields such as telecommunications, audio
recording, and acoustic signal processing. One of the key aspects of their func-
tionality lies in their ability to capture sound from different directions, which is
determined by their directional patterns. These patterns illustrate how the array
responds to sound sources from various angles.

By understanding and manipulating directional patterns, researchers and practition-
ers can unlock the full potential of microphone arrays across a spectrum of real-world
scenarios.
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1.1 Wave Propagation

Sound waves within fluids, like air and water, take the form of longitudinal waves,
where the fluid molecules oscillate back and forth in the same direction as the wave
travels. This movement creates areas of compression and expansion, known as rar-
efaction, in adjacent regions. To establish the equation governing the propagation of
these waves, we will derive the equations describing the movement of an infinitesimal
volume of fluid using Newton’s second law of motion.

After making some assumptions about the viscosity of the fluid and considered it
ideal, the equation can be denoted as [1]:

∇2x(t, r)− 1

c2
δ2

δt2
x(t, r) = 0 (1)

where ∇2 is the Laplacian operator, c is the speed of propagation and x is a function
representing the sound pressure at a point in time t and space

r =

x
y
z

 (2)

We can solve the differential wave Equation 1 by using the separation of variables
method. Two solutions can be declined, the first one for a monochromatic plane
wave and the second one for a spherical plane wave. In the case of a monochromatic
plane wave, the solution is given as :

x(t, r) = Aej(ωt−k·r) (3)

where A is the wave amplitude, ω = 2πf is the frequency in radians per second,
and k is the wavenumber vector corresponding to the speed and direction of wave
propagation, it is defined by :

k =
2π

λ
[sin θ cosϕ sin θ sinϕ cos θ] (4)

where λ = c/f is the wavelength. In the case of a spherical wave, the solution will
be :

x(t, r) = − A

4πr
ej(ωt−kr) (5)

where k = |k| = 2π/λ is the scalar wavenumber, and r = |r| is the radial distance
from the source.

Equation 5 shows a decrease in the signal amplitude by increasing the source dis-
tance. Sound waves are typically spherical in nature, but they could be considered
as plane waves at a certain distance from the source, and this approximation is
often used to simplify mathematical analysis. That means that the spherical wave
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solution is checked under some distance, in other words, Equation 5 is valid if the
source is in the near-field, which corresponds to [2] :

r <
2L2

λ
(6)

where L is the length of a linear aperture sonar.

That is why during the whole paper we will work only with plane waves under the
far-field condition. In this section, we assumed that the equations are in a homo-
geneous, lossless medium and we neglect the effects such as dispersion, diffraction,
and changes in propagation speed.

1.2 Continuous Apertures

An aperture corresponds to a spatial zone that either transmits (active aperture) or
receives (passive aperture) propagating waves. For acoustics, an aperture converts
acoustic signals into electrical signals (microphone), or vice-versa (loudspeaker).

1.2.1 Aperture Function

The received signal xR for an aperture will correspond to the convolution between
the signal x and its linear filter with an impulse response a. This will result in :

xR(t, r) =

∫ ∞

−∞
x(τ, r)a(t− τ, r)dτ (7)

or, by taking the Fourier transform,

XR(f, r) = X(f, r)A(f, r) (8)

where A(f, r) is the aperture function or the sensitivity function, and it defines the
response as a function of spatial position along the aperture.

1.2.2 Directivity Pattern

In the case of a linear aperture exposed to planar waves, the response of a receiving
aperture varies with the direction of arrival of the waves. By using the solution of
the plane wave (Equation 3), it can be proven that the directivity pattern DR is
related to the aperture function AR [1] by the relation :

DR(f, α) = Fr{AR(f, r)} (9)

=

∫ ∞

−∞
AR(f, r)e

j2πα·rdr (10)
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where Fr{·} denotes the three-dimensional Fourier transform,

r =

xa

ya
za

 (11)

is the spatial location of a point along the aperture, and the direction vector is :

α =
1

λ
[sin(θ) cos(ϕ) sin(θ) sin(ϕ) cos(θ)] (12)

where θ and ϕ are respectively the polar angle and the azimuthal angle in a spherical
coordinate system. In Figure 1, we have two incident plane waves arriving on an

Figure 1: Aperture representation on an x-y plane from two incident plane waves

aperture of length L with a normal steering angle for the red plane wave and a
steering angle of ϕ for the blue one. We notice that the amount of signal seen by the
aperture AR1 is greater than the aperture AR2 due to the steering angle. Therefore,
the directivity pattern DR will be higher with the red planar waves.

1.2.3 Linear Apertures

In this section, we will consider the linear aperture as uniform and frequency-
independent. The aperture function may be written as :

AR(xa) = rect
(xa

L

)
(13)

where

rect
(x

L

)
=̂

{
1 |x| ≤ L

2

0 |x| > L
2

(14)
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With Equation 9, the resulting directivity pattern is :

DR(f, αx) = L sinc(αxL) (15)

where

sinc(x)=̂
sin(x)

x
(16)

We can notice that the directivity pattern reaches zero when αx = mλ/L, where m
is an integer and αx = sin θ cosϕ

λ
is the x component of the α vector. The main lobe

refers to the area of the directivity pattern in the range −λ/L ≤ αx ≤ λ/L. The
beam width designates its extent with a value of 2λ/L also equal in frequency at
2c/fL. We can conclude that the beamwidth and the frequency will be inversely
proportional.

To examine the effectiveness of the directivity pattern over varying angles of arrival
we need to consider the normalized directivity pattern as :

DN(f, αx) =
DR(f, αx)

Dmax

= sinc(αxL) (17)

where Dmax = L is the maximum possible value of the directivity pattern.

For a better understanding of the physical significance of αx, we will consider a
horizontal directivity pattern, i.e. θ = π

2
, implying αx = cosϕ

λ
. That leads to the

following equation :

DN(f,
π

2
, ϕ) = sinc

(
L

λ
cosϕ

)
(18)

Figure 2: Horizontal directivity pattern for L
λ
= 5

Figure 2 well illustrates the properties of the directivity pattern with a ratio of
L
λ
= 5, the bandwidth in this case is equal to 2 ∗ λ

L
180
π

= 23◦.

To observe the evolution of the ratio L
λ
, we plot Figure 3. We notice that the

more the ratio gets important the narrower the main lobe gets. We also notice the
apparition of several secondary lobes at a higher ratio.
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Figure 3: Polar plot of directivity pattern

1.3 Discrete Sensor Arrays

In practice, an aperture is not continuous but rather excited at a finite number
of discrete points. To define a sensor array, we use the superposition principle of
multiple sensor responses.

1.3.1 Linear Sensor Arrays

Considering a linear array of N elements and using the superposition principle, we
can express the complex frequency response of the array as [3]:

A(f, xa) =
N∑

n=1

wn(f)en(f, xa − xn) (19)

where wn is the complex weight for element n, en is the complex frequency response
of the sensor n and xn is its spatial position on the x-axis. The directivity pattern
for a linear, equally spaced array of identical sensors is :

D(f, ϕ) =
N∑

n=1

wn(f)e
j 2πf

c
nd cosϕ (20)

where d is the distance between all successive elements.

Using all of the above assumptions, the effective length of the sensor array used is
L = Nd. From a physical point of view, the actual physical length of the array will
be L = (N − 1)d.
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Figure 4: Directivity pattern with different numbers of sensors (f=1kHz, L=1m)

Figure 5: Directivity pattern with different distances between sensors (f=1kHz,
N=5)

Figure 6: Directivity pattern for f ∈ [0, 3000]Hz (N=5, d=0.2)
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From the equation 20, we see that the directivity pattern depends upon three pa-
rameters: the number of array elements N , the inter-element spacing d, and the
frequency f . We will plot three figures and vary each parameter to observe the
effect on the directivity pattern.

Thanks to Figure 4, we observe that the sidelobe level decreases with increasing
spatial sampling frequency. In conclusion, the more sensors we use, the lower the
sidelobe level. In Figure 5, we can notice that the beam width is inversely propor-
tional to the array length. Finally, Figure 6 shows the beamwidth decreasing for an
increasing frequency.

1.3.2 Spatial Aliasing

The Nyquist–Shannon sampling theorem defines the minimum frequency required
to avoid aliasing. There are two types of aliasing, temporal sampling aliasing and
spatial sampling aliasing.

To avoid grating lobes, in the directivity pattern for the temporal sampling, the
signal must be sampled at a rate fs such that :

fs =
1

Ts

≥ 2fmax (21)

where fmax is the maximum frequency component in the signal’s frequency spectrum.
In the case of spatial sampling, the requirement is [3] :

fxs =
1

d
≥ 2fxmax (22)

where fxs is the spatial sampling frequency in samples per meter and fxmax is the
highest spatial frequency component in the angular spectrum of the signal. Further-
more, we know that :

fxmax = (fxs)max =

∣∣∣∣sin θ cosϕλ

∣∣∣∣
max

=
1

λmin

(23)

Considering the maximum value of fxmax the requirement becomes:

d <
λmin

2
(24)

where λmin is the minimum wavelength in the signal of interest. Equation 24 is
known as the spatial sampling theorem and must be adhered to prevent the occur-
rence of spatial aliasing in the directivity pattern of a sensor array.

We can see this kind of aliasing in Figure 6 where fxmax = 850Hz. The peak at 1500
Hz corresponds to this aliasing frequency. In this case, we should have taken only
the part under 850Hz for better reliability.
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1.3.3 Array Gain and Directivity Factor

The main interest of a sensor array is the improvement of the signal-to-noise ratio
to a unique reference sensor. In order to compare both we measure the array gain
Ga expressed as [4]:

Ga =
Gd

Gn

(25)

where Gd is the gain to the desired signal and Gn is the average gain to all noise
sources. In the case of a diffuse noise field, the array gain is also known as the factor
of directivity

Ga(f, θ0, ϕ0) =
|D(f, θ0, ϕ0)|2

1
4π

∫ 2π

0

∫ π

0
|D(f, θ, ϕ)|2 sin θ dθ dϕ

(26)

where the desired source is located in the direction (θ0, ϕ0).

1.4 Beamforming

For the far-field horizontal directivity pattern of a linear sensor array, we have :

D(f, αx) =
N∑

n=1

wn(f)e
j2παxnd (27)

where in general wn can be expressed in terms of its magnitude an and phase ϕn

components as :

wn(f) = an(f)e
jφn(f) (28)

Modifying the amplitude weights has an impact on the shape of the directivity
pattern and at the same time modifying the phase weights impacts the angular
location of the response’s main lobe. The main goal before applying beamforming
techniques is to determine the complex sensor weights wn.

2 Beamforming Techniques

Beamforming, a pivotal technology in wireless communications, employs arrays of
antennas to enhance signal transmission. Fixed beamforming techniques involve
predetermined signal adjustments to optimize directionality and reduce interference.
Conversely, adaptive beamforming adapts dynamically to changing conditions, dy-
namically adjusting phase and amplitude to optimize signal reception. In our case,
we will focus more on fixed beamforming with data independence.
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2.1 Noise Fields

There are three main categories of noise fields for microphone array applications.
These categories are characterised by the degree of correlation between noise signals
at different spatial locations. A commonly used measure of the correlation is the
coherence, which is defined as [3]:

Γij(f) =
Φij(f)√

Φii(f)Φjj(f)
(29)

where Φij is the cross-spectral density between signals i and j. The three categories
of noise fields are the :

• Coherent noise fields, where noise signals propagate to the microphones di-
rectly from their sources. The noise between microphones will be strongly
correlated. That results in |Γij(f)|2 ≈ 1.

• Incoherent noise field, where noise measured at any given spatial location is
uncorrelated with the noise measured at all other locations. That results in
|Γij(f)|2 ≈ 0.

• Diffuse noise field, where noise of equal energy propagates in all directions si-

multaneously. That results in Γij(f) = sinc
(
−2πfdij

c

)
where dij is the distance

between sensors i and j.

2.2 Classical Beamforming

2.2.1 Delay-sum Beamforming

Delay-sum beamforming consists of phase weight to the input channels. This will
steer the main lobe of the directivity pattern to a desired direction. In a delay-sum
beamformer, the phase weighting is frequency-dependent contrary to the amplitude
weighting. In order to obtain the correct phase weight, we have to consider the time
τn the plane wave takes to travel between the reference sensor and the nth sensor:

τn =
(n− 1)d cosϕ′

c
(30)

where ϕ′ corresponds to the steering angle of the main lobe of the directivity pattern.
By knowing that the delay for the nth sensor can also be expressed as :

τn =
φn

2πf
(31)
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And by applying this time delay to the negative phase shift we obtain the following
phase weights :

φn =
−2πf(n− 1)d cosϕ′

c
(32)

In a delay-sum beamformer, the phase weighting is frequency-dependent contrary
to the amplitude weighting. Usually, each channel is given an equal amplitude
weighting in the summation, so that the directivity pattern demonstrates unity gain
in the desired direction, which gives :

wn(f) =
1

N
ej

−2πf(n−1)d cosϕ′
c (33)

We obtain finally the following directivity pattern :

D(f, ϕ) =
N∑

n=1

ej
2πf(n−1)d(cosϕ−cosϕ′)

c (34)

In our case, the directivity pattern’s main lobe has moved to the direction ϕ = ϕ′.

Finally, we can express the array output as the sum of the weighted channels and
we obtain :

y(f) =
1

N

N∑
n=1

xn(f)e
j
2πf(n−1)d cosϕ′

c (35)

Figure 7: Directivity pattern with steering angles (f=1kHz, N=5, d=0.1m)

In Figure 7, we can see the evolution of the steering over the main lobe following
the value ϕ in input.

2.2.2 Filter-sum Beamforming

The delay-sum beamformer is in fact just a particular case of the filter sum beam-
formers, in which both the amplitude and phase weights are frequency dependent.
The weight will then correspond to Equation 28.
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2.2.3 Sub-array Beamforming

We saw in the section ”Spatial Aliasing” that the frequency has to respect the spatial
sampling theorem which limits the frequency domain to only some bandwidth. The
idea of sub-array beamforming is to cover broadband frequency signals. To do so,
the method is to implement the array as a series of sub-arrays, which are themselves
linear arrays with uniform spacing. Each sub-array will be designed to give the
desired frequency range. In addition, to ensure the sidelobe level remains the same
across different frequency bands, the number of elements in each sub-array should
remain the same to keep the same resolution. Each sub-array is restricted to a
different frequency range by applying band-pass filters, and the overall broad-band
array output is formed by recombining the outputs of the band-limited sub-arrays.

To obtain the total output y, we have to start by summing the weighted channels
for each sub-array s and apply them to a band-pass filter with specified frequencies
for each sub-band as :

ys(f) =
N∑

n=1

ws,i(f)xi(f) (36)

where xi is the input to channel i of the array, and N is the number of microphones
in the array with only the microphones from the sub-array s being sum. In general,
we use a delay-sum beamforming technique for the weights. The final step is to sum
all of the S sub-arrays by :

y(f) =
S∑

s=1

ys(f) (37)

Figure 8: Sub-array diagram

Figure 8 shows each step of the method. Considering all sensors are equally spaced
and considering the spatial aliasing, we can attribute the first sub-array to high
frequency, the second one to the medium, and the last one to low frequency. In this
case, we tried to keep approximately the same number of sensors in each sub-array.
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2.3 Superdirective Beamforming

A superdirective beamformer can emphasize the properties of a simple linear array
by reducing the spacing between the sensors. To verify this improvement, we will
maximize the array gain (Equation 26). Considering w is the filter-sum weight
vector, d the propagation vector, we can formulate the horizontal directivity pattern
in matrix notation as [5]:

D(f, ϕ) =
N∑

n=1

wn(f)e
j 2πf

c
(n−1)d cosϕ (38)

= w(f)Hd(f) (39)

where (·)H denotes matrix transpose conjugate. By implementing Equation 26 in
Equation 39 we obtain :

Ga(f, θ0, ϕ0) =
|w(f)Hd(f)|2

w(f)HΓ(f)w(f)
(40)

where Γ is the diffuse noise field defined as :

Γ(f) =
1

4π

∫ 2π

0

∫ π

0

d(f)d(f)H sin θ dθ dϕ (41)

2.3.1 Unconstraint Array Gain

Superdirective beamformers have to stay the most general as possible. In this part,
the objective is to optimize the array gain by calculating the best weight vector w,
i.e. :

maxw
|wHd|2

wHΓw
(42)

The solution is :

w = βΓ−1d (43)

where β is an arbitrary complex constant. Choosing β to produce a unity signal
response with zero phase shift so that wHd = 1 gives :

w =
Γ−1d

dHΓ−1d
(44)

This will result in an array gain equal to :

Ga = dHΓ−1d (45)
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2.3.2 White Noise Gain

In practice, the previous section can lead to an undesirable gain of incoherent noise
due to electrical sensor noise and errors in microphone spacing. To robustify the
solution we consider that the noise is spatially white or uncorrelated from sensor to
sensor, Γ becomes the identity matrix. The array gain becomes the white noise gain
[5] Gw, express as :

Gw =
|wHd|2

wHw
= δ2 ≤ M (46)

where the constraining value δ2 must be chosen less than or equal to the maximum
possible white noise gain M for the problem to be self-consistent. The solution of
this equation is an analogy to the Equation 44 :

w =
[Γ + εI]−1d

dH [Γ + εI]−1d
(47)

where ε is the Lagrange Multiplier and is adjusted to satisfy the white noise gain
constraint.

3 Simulation

To apply the theory to a practice case, we model a linear array sensor and simulate
a random noise arriving from one direction. In this simulation, we will focus on the
filter-sum beamforming method.

We will position the sensors along the x-axis equally spaced d and the noise will
arrive on each sensor with a time delay depending on the direction of arrival ϕ. To
create a real environment we will add white noise with a signal-to-noise ratio equal
to zero.

Considering the parameter as N = 10, d = 0.5, ϕ = 80◦, Fs = 8kHz, c = 1500m.s−1

(we consider here the underwater celerity) and a total duration of the signal of 5
seconds.

Figure 9 shows the energy from a time window of the signal. To have a temporal
view, we need to stage the average energy over the useful frequency. Knowing
that the aliasing frequency is equal to 1500Hz and to reduce the noise in the low
frequency, the average energy is taken between 500Hz and 1500Hz. The choice of a
low cut frequency is totally subjective by looking at Figure 9. Best approximation
and amplification at low frequency are developed in [6].

We obtain the results in Figure 10 by overlapping the windows. We notice that
the main lobe is well-centered around ϕ = 80◦match with the incoming angle of the
noise. We can also note that by taking the average energy over frequency the other
lobes will cancel each other.
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Figure 9: Energy from a snapshot

Figure 10: Energy of the signal-averaged on frequency

4 Conclusion

Various beamforming techniques have been meticulously examined to precisely dis-
cern the direction of arrival of sound sources within a 2D environment using a linear
sensor array. It becomes evident that the performance of these techniques is intri-
cately tied to directional patterns, thus directly influenced by factors such as the
number of sensors, inter-element spacing, and observed frequency. The filter-sum
beamforming technique is tested and the results show accurate results in the direc-
tion of the source.

15



References

[1] L. Ziomek, Fundamentals of Acoustic Field Theory and Space-Time Signal Pro-
cessing (1st ed.). 1994.

[2] B. Steinberg, Principles of Aperture and Array System Design: Including Ran-
dom and Adaptive Arrays. A Wiley-Interscience publication, Wiley, 1976.

[3] I. McCowan, Microphone Arrays : A Tutorial. 2001.

[4] D. Cheng, “Optimization techniques for antenna arrays,” Proceedings of the
IEEE, vol. 59, no. 12, pp. 1664–1674, 1971.

[5] H. Cox, R. Zeskind, and M. Owen, “Robust adaptive beamforming,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 10,
pp. 1365–1376, 1987.

[6] S. Delikaris-Manias, C. A. Valagiannopoulos, and V. Pulkki, “Optimal direc-
tional pattern design utilizing arbitrary microphone arrays: A continuous-wave
approach,” in Audio Engineering Society Convention 134, May 2013.

16


	1 Introduction
	1.1 Wave Propagation
	1.2 Continuous Apertures
	1.2.1 Aperture Function
	1.2.2 Directivity Pattern
	1.2.3 Linear Apertures

	1.3 Discrete Sensor Arrays
	1.3.1 Linear Sensor Arrays
	1.3.2 Spatial Aliasing
	1.3.3 Array Gain and Directivity Factor

	1.4 Beamforming

	2 Beamforming Techniques
	2.1 Noise Fields
	2.2 Classical Beamforming
	2.2.1 Delay-sum Beamforming
	2.2.2 Filter-sum Beamforming
	2.2.3 Sub-array Beamforming

	2.3 Superdirective Beamforming
	2.3.1 Unconstraint Array Gain
	2.3.2 White Noise Gain


	3 Simulation
	4 Conclusion

