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Abstract

This paper reviews the application of machine-learning techniques in the
field of spatial audio. Different aspects of spatial audio tasks, including cap-
ture, processing, and reproduction, are covered. The review begins with a
comprehensive overview of spatial audio, followed by an investigation of vari-
ous machine-learning techniques and their relevance to this domain. Different
architectures of neural networks are employed for distinct spatial audio tasks.
Sound source localization is used as an example for spatial audio-capturing
tasks. For processing tasks, sound fields reconstructed based on neural net-
works are reviewed. As an example for spatial audio reproduction tasks,
head-related transfer function modeling is covered. Trade-offs between each
method can include accuracy and efficiency in terms of real-time process-
ing. The findings from numerous studies have consistently demonstrated that
machine learning models can surpass traditional techniques in performance
and achieve tasks that were previously beyond the capabilities of traditional
methods.

1 Introduction

Spatial audio refers to the technology that involves audio signal processing and
acoustics to create the sensation of perceiving sound in environments [15]. This
concept originated with stereophony [2] and has evolved into numerous modern ap-
plications, including ambisonics [26], reverberation synthesis [9], binaural audio [6],
and 3-D sound systems used in virtual reality [27].

Many research studies have been carried out to improve the quality of different as-
pects of spatial audio processing. Recently, attention has shifted towards machine
learning techniques across various fields, including spatial audio. This is mainly

1



because some traditional methods are not accurate or efficient enough. Thus, for-
mulating these tasks into machine learning problems is convincing, and it can learn
to perform different analysis and reconstruction tasks from the collected data. In
the context of spatial audio tasks, machine learning is applied to tasks such as
sound source localization, spatial audio synthesis, room impulse response estimation,
acoustic scene analysis, and sound event detection. Machine learning algorithms can
learn from large datasets of audio recordings and corresponding spatial information
to improve the accuracy and efficiency of spatial audio processing techniques.

This paper is structured as follows: Section 2 provides an overview of various ma-
chine learning model architectures and discusses their application in spatial audio.
Section 3 describes machine learning methods for spatial audio capture. Section 4
reviews neural network models designed for sound field reconstruction, which falls
under the context of spatial audio processing. Section 5 discusses approaches to
synthesizing head-related transfer functions. Section 6 concludes the paper.

2 Machine learning in different aspects of spatial audio

The typical pipeline of spatial audio tasks consists of spatial capturing, spatial pro-
cessing, and spatial reproduction [4]. Spatial capture is the first stage of the pipeline.
This procedure includes gathering spatial information, which can be in the form of
raw recorded signals [10], spherical harmonics [18], and feature representations [22].
This information is then passed to the next step, which is spatial processing. At this
stage, the collected spatial data can go through various transformations, depending
on the tasks. The signal could be analyzed and decomposed to estimate parame-
ters. Examples of these parameters include room dimensions, source locations, and
reverberation times. Other transformations that are done during this stage are the
reconstruction of the sound field [1], resynthesis of sound scene [5], and spatial audio
coding [17]. After the spatial information is transformed, the final step is reproduc-
tion. Two main ways to reproduce spatial audio are based on loudspeaker [16, 3]
and binaural sound [14]. For loudspeaker-based reproduction, it can be as simple
as surround sound or it could be more intricate, such as wave field synthesis [5].
For binaural reproduction, the main tool to use is head-related transfer functions
(HRTFs). This helps create the sensation of different sound directions and distances
according to how humans perceive sound.

Most of the processes mentioned above can be carried out by using a multitude of
traditional techniques based on digital signal processing algorithms and acoustics
theory. However, some of those might not be able to produce the most accurate re-
sults or sometimes require high computational power. Therefore, many researchers
have now conducted studies where conventional methods are being replaced by ma-
chine learning models. In this context, when referring to the machine learning (ML)
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or deep learning (DL) approach, the neural network is the main tool. there are
many different topologies of neural networks. A generic fully connected feedforward
network is usually referred to as a deep neural network (DNN) or a multilayer per-
ceptron (MLP). This type of network can learn to approximate nonlinear functions
in order to estimate the complicated relationship between input and output data.
A more intricate type of feedforward network is the convolutional neural network
(CNN). In this architecture, the network has multiple kernels striding over the input
data performing convolution, hence the name. This type of network can perform
feature selection as the kernels can filter and extract meaningful features making it
suitable for many different tasks, especially when the input data has more than 1
dimension.

Apart from feedforward topologies, neural networks with feedback paths are gener-
ally referred to as recurrent neural networks (RNNs). There are many variants of
RNNs, with one of the most common being the long short-term memory (LSTM)
unit. This type of network is appropriate for modeling a stateful system.

3 Capture: Feature-based representations

This section reviews the representation of spatial information that is suitable for
data-driven approaches. This is essentially a regression task where acoustic features
are used as input to the neural network in order for it to predict meaningful values
such as the locations of sound sources. On the other hand, the neural network can
be trained to transform the input features into different representations that can
later be used to construct a subsequent tool, such as a spectral mask. The main
topic to be discussed is the sound source localization techniques with convolutional
neural networks [7] and recurrent neural networks [24, 23].

3.1 Localization with CNNs

In [7], a neural network model consisting of two CNNs of identical architecture is
proposed to perform sound localization in a shallow water environment. The CNNs
take different acoustic features as inputs, namely, the generalized cross-correlation
(GCC) and the power cepstrum. The model diagram is shown in Fig. 1. The
network was trained to predict both the range and the bearing of the source. The
power cepstrum is used as it contains echo information from multi-path reflections.
On the other hand, the GCC helps estimate the time-of-arrival differences in noisy
and uncorrelated signals. Experimental results showed that the neural network
outperform the baseline algorithmic method based on time-of-arrival differences in
[19]. Despite the fact that shallow water environments have many reflections coming
from sea surfaces, the trained CNNs were shown to be robust and the predictions
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Figure 1: CNN architecture for the acoustic source localization. Adopted from [7].

were not degraded as much as algorithmic methods. The only possible drawback of
this method is the computational complexity. The convolution operation is known
to be a computationally heavy process. If there are many hidden layers with each
layer being large in terms of kernel size, then the calculation speed can be low and
it would be difficult to track the sound source in real-time.

3.2 Speech separation with LSTMs

Besides environmental source localization, neural networks are also used for localiz-
ing speakers, which can then be used for speech separation in noisy or reverberant
environments. In [23], a bidirectional-LSTM (BLSTM), which is a non-causal RNN
model, was used for clustering. The model topology is shown in Fig. 2. This
paradigm is also known as unsupervised learning. In this type of learning, the neu-
ral networks are not exposed to target data as they could be unknown. However,
the network will be trained to optimize some objective functions. In this case, the
BLSTM model takes the input features consisting of spectral information and spa-
tial features such as the GCC, along with additional phase difference features from
the microphones. The features are clustered and encoded into an embedding rep-
resentation. The embeddings are learned such that the time-frequency units that
belong to the same speaker are brought closer together, while those from different
speakers are pushed further apart.
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Figure 2: BLSTN architecture for clustering, where v is the embedding vector.
Adopted from [23].

During inference, time-frequency features on each speaker are clustered via k-means
using the trained embeddings. Then, a spectral mask can be constructed to be
used for speech separation. Results demonstrate that the separated speech from
this method has higher signal-to-distortion ratios than old techniques such as the
Wiener filter and models based on the expectation-maximization algorithm.

4 Processing: DL-driven sound field reconstruction

This section reviews different deep learning models that can be optimized for sound
field analysis and reconstruction, such as CNNs [13] and RNNs [21]. Sound field
reconstructions relate to the simulation of sounds that match the real environment.
CNNs are suitable for this task since they are typically employed with 2-D data.
They can be used for both feature learning and generating tensors of two or more
dimensions. In this case, they can be used to reproduce a 2-D representation of a
sound pressure field from 3-D data. The RNNs on the other hand can also predict
the sound field, but they require less computational resources during inference due
to their recursive nature.

4.1 Sound field reconstruction with CNNs

Research work in [13] showed that a CNN model can be designed and trained to
reconstruct the sound field of a room in the form of sound pressure magnitude. The
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Figure 3: Diagram of the sound field reconstruction model. Adopted from [13].

neural network was trained on simulated sound fields from common rectangular
rooms to predict sound field structures in the frequency range of 30 Hz to 300 Hz.
This model aims to accurately extrapolate and interpolate the sound field into a
higher-resolution representation. The network takes the magnitude of the Fourier
transform of the spatial sound field in three-dimensional space as input and predicts
the pressure magnitude of spatial sample points in a two-dimensional rectangular
plane.

The input data are preprocessed by completion, scaling, upsampling, and the gen-
eration of an encoding mask that stores the location information. The completion
step assigns a constant arbitrary value to positions in the data where the micro-
phone is absent. The diagram of the overall process is illustrated in Fig. 3. The
neural network architecture is a U-Net which is a variant of autoencoder models
based on CNNs. This topology is suitable for reconstruction tasks. There are skip
connections between layers which help retain previous meaningful latent spaces for
the latter layers. This was shown to improve the model performance.

This method is said to require a low number of training samples, and the microphone
can also be unevenly distributed. This approach is an improvement of traditional
methods for sound field reconstruction, such as the model-based method [8] since it
does not require a high density of microphones to achieve low reconstruction errors.
Additionally, it was suggested that it is feasible to employ this model for reconstruct-
ing the sound field in rooms of different shapes as well as using a three-dimensional
representation of the spatial sample points, which has the same dimensionality as
its input.
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Figure 4: DeepWave RNN architecture. Adopted from [21].

4.2 Acoustic imaging with RNNs

In [21], a recurrent model is designed to perform real-time acoustic imaging called
DeepWave. For real-time applications, using RNNs is more suitable than CNN. This
is because it requires less computational power. We think of RNNs as a set of non-
linear IIR filters, while CNN is a model that consists of many nonlinear FIR filters.
The diagram of the DeepWave model is illustrated in Fig. 4. This model takes
the recordings from the microphone array as input and learns to map the complex
correlation with microphones into a spherical map. The deblurring matrix learns to
reduce artifacts that can cause errors. The output of the model is a sound field of
pressure that changes in real time.

The trade-off of the RNN models is accuracy. They can be less accurate when com-
pared to CNNs since recurrent models tend to struggle with long-term dependencies.
If previous data from many past time frames needs to be computed with the cur-
rent data frame, then RNN might not be the best choice as that information might
have vanished through time already. Thus, this is a clear example where we have to
choose between high-accuracy or high-speed calculation for real-time systems.

5 Reproduction: HRTF personalization and generalization

This section focuses on spatial reproduction tasks driven by deep learning techniques.
Specifically, the modeling of HRTFs, which can be used for binaural sound reproduc-
tion, is reviewed. The HRTF is distinguished by the unique shapes of individuals’
heads and ears, aiding listeners in localizing sound sources. This characteristic is
crucial because, in addition to interaural time differences (ITD) and interaural level
differences (ILD), frequency response also plays a significant role in distinguishing
the direction of the sound.
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5.1 Principal component analysis

HRTF has been extensively studied in previous research, revealing that traditional
methods like principal component analysis (PCA) can approximate HRTFs by mod-
eling them with multiple orthogonal linear basis functions [11, 25]. This helps reduce
the need to store HRTFs for different azimuth and elevation values, thereby reducing
dimensionality. In this previous study, it was shown that HRTFs can be approxi-
mately represented by a linear combination of five basic spectral shapes. Thus, five
basis functions derived via the PCA method are used.

A recent study in [25] incorporated a feedforward neural network to help predict
weights for the spatial PCA (SPCA) model. The neural network takes the anthro-
pometric parameters of an individual as inputs and maps them to SPCA weights.
Through the SPCA techniques, HRTFs can be decomposed into a combination of
spatial principal components which is similar to the spherical harmonics basis func-
tions. With additional ITD modeling from the desired azimuth and elevation, a new
HRTF can be reconstructed for arbitrary spatial directions.

5.2 Deep neural networks

In recent years, deep neural networks have emerged as a promising approach for
directly modeling HRTFs with greater accuracy. In [12], a deep learning model that
consisted of three sub-networks was proposed. The deep neural network architecture
is illustrated in Fig. 5. The first sub-network (A) is a fully connected feedforward
neural network that takes anthropometric measurements as inputs. These mea-
surements involve the dimensions of the head, pinna, neck, and torso. The second
sub-network (B) is a convolutional neural network that takes in a 2-D image of the
ear as input. The outputs of both networks are then combined and passed into the
third sub-network (C) to predict the HRTF and compare it with the target data.
By training on this intricate and nonlinear mapping, neural networks can achieve
precise HRTF modeling.

When compared to the SPCA approach in [25], despite the fact that both used MLP
as a part of the methods. This model is more straightforward and requires fewer
procedures for decomposing and reconstructing the HRTFs through PCA. Another
work in [20] proposed a simpler MLP-based model that was trained to select HRTFs
instead of generating a new one. The anthropometric measurements are the inputs
to the model. The model will then choose existing HRTFs from a large database
that are the most correlated to the ear dimension and other measurements. The
drawback of the approach is the requirement of large memory space to store as many
HRTFs as possible in order to increase generalizability.
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Figure 5: Block diagram of a deep neural network (DNN)-based HRTF estima-
tion method using anthropometric measurements and ear image. Adopted
from [12].

For the HRTF modeling task, employing a deep neural network may offer superior
accuracy. This advantage stems from the network’s ability to utilize multiple hidden
layers to map and interpolate intricate HRTFs. While the PCA-based method can
approximate HRTFs, it necessitates numerous basis functions to precisely estimate
them. Additionally, the PCA-based approach lacks generalizability since the func-
tions are constructed based on a single individual, whereas the neural network model
can generate corresponding HRTFs for any individual with a picture of their ear and
anthropometric measurements. This makes it more versatile. A potential avenue for
future research, building on the work of Lee et al. [12], is to develop a CNN model
that predicts HRTFs solely from ear images without requiring anthropometric mea-
surements. Such an approach would be more convenient for individuals seeking to
utilize their HRTFs without the need for tedious measurements.

6 Conclusions

In summary, this review paper explored different aspects of machine learning tech-
nique utilization for tasks related to spatial audio.

Various neural network architectures can be applied for different tasks within the
spatial audio pipeline. For instance, in feature-based representation, neural networks
such as LSTMs and CNNs are shown to be suitable for sound source localization
when trained as regression models. Moreover, both CNNs and RNNs demonstrate
proficiency in sound field reconstruction. Notably, RNN-based models offer the
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advantage of real-time sound field display due to their low computational cost. For
the reproduction side of spatial audio, HRTF modeling can be done with a more
straightforward architecture of multilayer perception. It is apparent that the model
does not need many analysis tasks as opposed to PCA-based methods. Despite the
non-complex topology, the machine learning-based method can learn from real-world
data and outperform conventional algorithmic methods. This versatility in using
neural networks highlights how adaptable and effective machine learning approaches
are in spatial audio processing.
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