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Abstract

6 Degrees of freedom (6DOF) reproduction of acoustics aims to provide
a dynamic acoustics rendering to a listener that can move in six degrees of
freedom. In this review, impulse response-based 6DOF reproduction tech-
niques are reviewed. First, two-point interpolation is covered. This includes a
review of mathematical interpolation techniques for two signals, which is the
basis of many techniques to interpolate available RIRs to listener perspec-
tives, followed by partial optimal transport for the interpolation between two
known RIRs. Following this, multi-point interpolation is reviewed which re-
lies on multiple (three) known listener perspectives. These techniques rely on
Ambisonic room impulse responses (ARIRs) which contain spatial direction
of incident plane waves that make up the RIR. The extra spatial informa-
tion about the sound field or sound events (highly related) allows for the
use of multiple ARIRs in interpolation. Lastly, neural acoustic fields, a deep
learning-based interpolation, is presented which has advantages in dynamic
source and listener positions but only applicable to one acoustic scene.

1 Introduction

6DOF spatial sound reproduction delivers immersive, lifelike soundscapes that dy-
namically adjust to the listener’s movements within a given scene. Unlike conven-
tional stereo or surround sound setups, 6DOF spatial audio technology creates an
environment where sound objects appear to exist in specific locations relative to
the listener, regardless of their position or orientation. This innovative approach
ensures that the auditory perception remains consistent and realistic, mirroring the
complexities of real-life sound scenarios. Whether walking, jumping, or simply turn-
ing around, individuals immersed in a 6DOF spatial sound environment encounter
a realistic auditory journey, where every shift in perspective seamlessly aligns with



the spatial positioning of sound sources, heightening the overall sense of presence
and immersion. The spatial reproduction of a sound scene that responds to the
arbitrary translations and rotations of a listener is referred to as variable listener
perspective auralization.

In this seminar paper, room impulse response (RIR)-based 6DOF reproduction
methods are reviewed. IR-based 6DOF reproduction auralizes sound sources by
convolving dry signals with directional room impulse responses while taking into
account variable listener position and orientation. The 6DOF reproduction of am-
bisonics recordings is not in the scope of this review.

The paper is organized as follows: Section 2 covers traditional mathematics-based
interpolations such as linear time-domain interpolation and linear frequency-domain
interpolation. It also discusses interpolating between two receiver positions using
partial optimal transport which results in an RIR with the desired peak and temporal
shifts. Section 3 covers RIR interpolation from multiple RIRs distributed throughout
a room. Section 4 covers neural acoustic fields, a deep learning approach for RIR
interpolation. Finally, Section 5 summarizes the paper.

2 Two-point Interpolation

2.1 Mathematical Interpolations

This section explains two basic interpolations that interpolate two signals covered in
[1]: linear interpolation in the time domain and linear interpolation in the frequency
domain. These mathematical interpolations often act as a baseline interpolation for
performance evaluation and are used as a component in a greater interpolation
scheme.

2.1.1 Linear Interpolation in Time Domain

Linear interpolation of two time-domain RIRs is the linear combination of the
two signals weighted by distance criteria between the extrapolated perspective and
known perspectives.

Over a 2D rectangular grid of RIRs, bilinear interpolation is performed which con-
sists of three linear interpolations; for a listener perspective at (x;, ;) two linear in-
terpolations are performed between (z;, ¥;) (11, v:), and (x;, Yi+1) (i1, Yir1). These
are then linearly interpolated a third time to achieve the desired signal.

Linear interpolation does not work well because it averages sample amplitudes rather
than interpolating in the time dimension to make one peak. Figure 1 demonstrates
time-domain linear interpolation.
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Figure 1: Linear interpolation in the time domain.

2.1.2 Linear Interpolation in Frequency Domain

The RIRs are translated to the frequency domain and interpolated in magnitude
and phase. This results in a better interpolation method than linear interpolation
in the time domain, as shown in Figure 2. The amplitudes of the two peaks are
interpolated and a single peak is shifted in the time domain between the original
two peaks.
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Figure 2: Linear interpolation in the frequency domain.



2.2 Interpolation using Partial Optimal Transport

Partial optimal transport has also been used to interpolate spatial room impulse
responses’ (SRIR) [2], in which a direct correspondence between the direct and
early peaks in the available SRIRs is not solved for. Instead, a proposed coupling
between reflections is found through partial optimal transport. The method here
proposes an interpolation plan for the straight line between two listener locations
and a fixed source location, thus only needing two SRIRs. If the problem is extended
to more listener positions, there must be some constellation of ground truth SRIRs
and multiple partial optimal transport plans.

This method utilizes a geometrical acoustics premise where the direct and early
reflections of the SRIR are emitted from virtual sound sources, where each virtual
sound source represents a reflection path from source to receiver. Thus the early
portion of the SRIR can be represented by a point cloud of virtual sources P. In
the implementation presented, the exact locations of the virtual sources in the point
cloud are known because the room geometry is known and the SRIRs are simulated.
However, to construct the point cloud of a measured SRIR, the SRIR is divided into
short segments where each segment represents a virtual source: the virtual source
is located in space by estimating the time of arrival (TOA) and direction of arrival
(DOA) of that segment.

Then given a fixed sound source location, the interpolation problem between two
point clouds P, Q representing two receiver locations at sp and sg is to find point
cloud R at an intermediate receiver location sz ,, = (1—k)sp+rsg for interpolation
parameter k where 0 < x < 1. Figure 3 shows two point clouds for two different
receiver locations and the same source location.

The objective in classical optimal transport (OT) theory is to find an optimal cou-
pling matrix T € RV*M that defines the mass transported between P and Q, where
the number of discrete masses are N = |P| and M = |Q|. The cost to transport
mass — defined here as the effective pressures p and q — from one virtual source to
another is defined by the squared Euclidian distance between sources

Cij = llzpi — a5 -

The optimal transport plan is found by minimizing the Frobenius inner product of
the cost and transport matrices, i.e.,

N M
min (C,T)r = m%nzzci,jTi,j (1)

i=1 j=1

I'The SRIR is room impulse response where the virtual source locations for each peak in the
RIR is known or estimated, for example via extracted virtual source locations from Ambisonic
RIRs from the pseudo intensity vector for DOA. It can also be a collection of virtual sources with
location information that contribute known energy to the RIR.
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Figure 3: Top row: Two point clouds P, Q for two source-receiver pairs in the
same room. The size of the dot represents the effective pressure of the
sound source. Bottom row: P, Q superimposed with the respective
receiver positions at the origin. The partial optimal transport matrix
dictates the amount of mass transferred between the points in one cloud
to another.

s.t. T]_M:p,
TT]_N =q,

to constrain that all the mass of each virtual source p; in P is transferred to the
virtual sources ¢; in @ and vice versa.

In the case of SRIR point clouds and many other transportation problems, the mass
of one point cloud is different from the mass of the other. Hence, the partial optimal
transport problem relaxes the mass constraint by utilizing dummy points to the cost
matrix and transportation matrix to allow for the introduction or removal of mass
in the transportation plan.

The authors utilize a Matlab optimization solver to find the partial optimal transport
plan T which fully and continuously provides an interpolation for any receiver loca-
tion si on the straight-line path between sp and sg. To construct the interpolated
RIR from {T, x, P, Q}, an algorithm to handle three possible mappings (transported
mass, vanishing/appearing mass, and moving dummy mass) is proposed. A com-
parison between interpolated SRIRs and the ground truth SRIRs show that partial
OT outperforms linear time-domain mapping and nearest neighbor mapping.



Partial OT for SRIR interpolation is flexible; the method works for non-cuboidal
rooms, disappearing and appearing virtual sources (due to occlusion), and provides
a continuous interpolation solution for the entire straight path between two receiver
locations. However, this interpolation is not a good solution for the late reverber-
ation since the exponential increase of point sources with respect to time. This
optimal transport plan however only returns an interpolation between two receiver
locations, and future work needs to be done to extend partial OT to a grid of SRIRs.

3 Multiple-Point Interpolation

The second paradigm for 6DOF auralization uses multiple measured or simulated

RIRs from multiple perspectives, typically ambisonic room impulse responses (ARIR),
to interpolate the RIR at the listener’s perspective. This is followed by a review of

a multi-perspective ARIR interpolation method [4] and sparse plane wave decom-

position method [5].

3.1 Interpolation of Multi-perspective ARIRs

To achieve better interpolation of spatial information from a grid of ARIRs, multiple
ARIRs can be used to generate an accurate ARIR at the listener’s perspective.
Miiller and Zotter [4] propose a multi-perspective ARIR interpolation scheme which
applies an involved interpolation of a triplet of ARIRs to a new listener perspective.

First, a triplet of ARIRs are selected from a grid of available ARIRs such that the
desired listener perspective falls within the triangulation of the selected ARIRs. This
selection process is analogous to vector base amplitude panning (VBAP) [6] where
a triplet of loudspeakers are selected based on sound source location.

Then, for each selected ARIR, a perspective extrapolation is applied to achieve an
ARIR at the desired listener perspective: an ARIR h;(t) with perspective z; will be
transformed to an ARIR hy(t) at the listener perspective z4. ARIR extrapolation is
done by segmenting the selected ARIR into short time chunks where each segment
is modeled as an independent sound event happening at position x;. Using the
known perspective difference between ARIR and listener position, each sound event
is extrapolated to the listener perspective by applying the appropriate rotation, gain,
and time adjustment, i.e.

hag(t) = G(x4, i, xq) R(y, T3 1) hi(E + At(24, 74, 74)) (2)
One contribution of this work by Miiller et al. [4] is a method of preserving temporal

context using a novel quantized time-shift map At(x;, z;, 24) in the extrapolation
step.



If the available ARIRs and thus subsequent extrapolated ARIR are first-order, Am-
bisonic spatial decomposition method (ASDM) by Zaunschirm et al. [8] is applied
to enhance the perceived spaciousness by transforming the first-order ARIR to a
higher-order Ambisonics signal. ASDM assumes a single time-varying direction as
the carrier of the sequence of the broadband sound signal. The direction of arrival
(DOA) vector of this carrier is estimated from the smoothed pseudo intensity vec-
tor of a band-limited first-order ARIR. The omnidirectional channel of the original
ARIR is then encoded to a higher-order Ambisonics signal based on the estimated
time-varying DOA vector.

The key contribution of the work is using the constellation of ARIRs to perform joint
sound-event localization. The joint sound-event localization is done using arrival
times of high-energy ARIR peaks and offers a higher localization accuracy than a
single DOA-based localization. First, peak detection and fundamental parameter
estimation is performed. Then the method for joint sound-event localization is
introduced. It includes a global localization of the direct sound source and triplet
based sound event localization of early peaks.

After obtaining the three extrapolated ARIRs, they are linearly interpolated (hence
“multi-perspective” interpolation) in the time domain to return a final listener per-
spective ARIR.

3.2 Sound Field Interpolation

Sparse plane wave decomposition generates an ARIR for a listener perspective by
representing the sound field as sparse plane waves from a set of measured or sim-
ulated ARIRs [5, 7]. In [5] the method presented analyzes the ARIRs in the time-
frequency domain and selects time-frequency bins with a strong directional compo-
nent, representing plane waves in the sound field, for interpolation.

Plane wave decomposition expresses an arbitrary, stationary sound field as a linear
combination of plane waves. In the method proposed in [5], the more simplistic
sparse plane wave decomposition is used which expresses the sound field as a linear
combination of fewer salient plane waves and a diffuse field component.

Similar to [4], three ARIRs from the available ARIRs are selected based on if the
listener falls within the triangulation. The short-time Fourier transform (STFT) is
applied to the selected ARIRs to obtain a time-frequency representation for each
ambisonics channel. Then, a residual energy test identifies which time-frequency
bins have a strong direct path component, corresponding to the incidence of a sound
wave.

The assignment of time-frequency bins as either plane wave or diffuse occurs. The
time-frequency bins with a residual energy metric above a user-set threshold are



selected to represent the plane waves. The unselected time-frequency bins represent
the diffuse field.

For the plane wave time-frequency bins, the corresponding amplitude and direction
of arrival of plane waves at each ARIR position are obtained. To obtain the ampli-
tude of the plane wave at the listener position, the dominant plane wave components
from each ARIR are translated to the interpolation position, which is then weighed
based on the distance between ARIR to listener position. To obtain the direction
of propagation of the plane wave at the listener position, the directions of the plane
waves from each ARIR are also averaged by a linear combination. These result in
amplitudes and directions of plane waves at the listener position, which are then
used to construct an Ambisonics signal at the listener position.

The diffuse time-frequency bins are linearly combined based on the distance from
each ARIR position and listener position. The diffuse component interpolation is
added to the plane wave signal to return the interpolated ARIR signal.

An evaluation using real measurements showed that linear interpolation in the spher-
ical harmonics domain provided a more diffuse result than the proposed approach
and a less accurate localization of the sound source.

4 Neural Representations

Neural acoustic fields (NAF) [3] is deep neural network that produces RIRs at unseen
source-listener pair positions and listener orientations. It is interesting to note that
so far, the reviewed 6DOF reproduction techniques allow free listener movement but
are only valid for stationary sound sources. With NAF, both the listener and receiver
positions can be dynamic. NAF is an acoustics adaption of a computer vision neural
network approach, neural representation fields (NeRF) which generates an image of
an object from some camera perspective.

NAF utilizes a multilayer perceptron to learn a continuous underlying RIR function
of a given scene (one or more acoustically connected spaces) from a recorded or sim-
ulated dataset. It generates RIRs from novel, variable source and listener positions.
NAF’s inputs are {x’, , 0, k, t, f} where source position is @', receiver position is x,
receiver orientation is 6, left /right channel encoding for binaural RIRs is k € {0, 1},
time bin is £, and frequency bin is f. Additionally from source-receiver positions, lo-
cal geometric conditioning is injected from a feature map grid(a’, ) learned during
training. The model’s outputs are the log-magnitude and phase angle of the RIR h
at time-frequency bin (¢, f). Thus NAF generates an STFT magnitude and phase
representation of the RIR.

NAF : (mly Z, 07 ka t; f) — (hSTFT,mag(t; f)a hSTFT,phase<t7 f)) (3)

The strength of NAF is two-fold, and its benefits come from two areas:



1. NAF is highly general: NAF has a very general architecture that does not
depend on any physics-based parameters or tuning. It’s training dataset is
simply monoaural RIRs or binaural RIRs with source-listener location and
orientation metadata.

2. The implicit representation of the acoustic field allows for (a) interpolation that
outperforms conventional interpolation techniques and (b) high compression
of IRs and fast computation:

(a) NAF outperforms bilinear and nearest neighbor interpolation. NAF per-
formance was compared to interpolated IRs coded with Advanced Audio
Coding (AAC), and Xiph Opus (Opus) formats, and image source method
baselines on reverberation time error Tgo and spectral loss percentage. A
listening test with two-alternative forced-choice task showed that 82.38%
NAF RIRs were higher quality than AAC-nearest. Figure 4 qualitatively
demonstrates that NAF produces a smooth loudness map that approxi-
mates the ground truth better than the linear interpolation and nearest
neighbor interpolation.

(b) The implicit representation of the neural field is stored within the pa-
rameters of NAF’s neural network. Once an NAF model is trained for a
scene, generating an IR is a simple as a forward pass through NAF. The
NAF model is able to better approximate the ground truth at a fraction
of the storage of the impulse responses required to train it.

GT-nearest NAFs AAC-nearest AAC-linear Opus-nearest Opus-linear

Figure 4: Loudness maps of a multi-room scene. From left to right: Ground-truth
nearest neighbor, NAF, AAC nearest, AAC linear interpolation, Opus
nearest, Opus linear. Notice how NAF properly captures loudness in the
secondary and tertiary room, and coupled room effects at thresholds.

The drawback of NAF is that each model only represents that specific acoustic
space, so a trained NAF is not able to generalize to novel environments. The other
multi-perspective ARIR methods described above are based on a strong model of
sound fields, and thus are applicable to any set of ARIRs.

In the implementation of NAFSs, it took on average 6 hours to train a model on one
scene. Additionally, the training dataset was 90% of the available RIRs for that
room, which is very high. It is unclear if linear interpolation or nearest neighbor
interpolation is perceptually the same as the NAF interpolation, since the number
of available RIRs is so large.



5 Summary

To summarize, mathematical interpolations such as linear interpolation are useful
as a baseline for comparison or when integrated into a larger interpolation frame-
work. At its core, the mathematical interpolation is the linear combination of two
signals. Partial optimal transport for spatial RIR interpolation finds the virtual
source contributions for any listener position on the straight line between two lis-
tener positions of known SRIRs. This is an interesting framing of RIR interpolation
but its application is limited and more work must be done to interpolate the SRIRs
in a plane.

More practical interpolations such as the multi-perspective ARIR interpolation and
the sparse plane wave decomposition ARIR interpolation have been proposed which
utilize spatial information in these ARIRs and some underlying model of sound
propagation. For a set of ARIRs with fixed source location and varying listener
locations, sound events can be localized in space using the spatial qualities in the
ARIR and then the resulting ARIR at the listener location can be found. In the
multi-perspective interpolation, the existing ARIRs are segmented in time where
each segment corresponds to a sound event occurring at some distance from the
recorded perspective. The spatial information of this sound event can be used to
calculate the sound event as it is heard at the listener perspective. In the sparse
plane wave decomposition interpolation, the ARIR is segmented into time-frequency
bins which correspond to plane waves arriving from some direction. The plane waves
here originate from the sound events in the multi-perspective interpolation: these
are the same thing.

For all the methods described, the source location is static while the listener moves.
However, a recent deep learning approach, neural acoustic fields, has allowed for
the smooth interpolation of RIRs that accommodate dynamic source and listener
movement. This is a very powerful and exciting direction, however, an NAF is
trained only on one acoustic scene so a new model must be retrained from scratch
for every new scene. This paper reviews some exciting and interesting methods for
6DOF reproduction.
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