
Math Camp - Analysis



Preliminaries

Our goal:

max
x∈X

f (x)

s.t. g(x) ≥ 0

We want to really understand this problem



Sets

X is a set. A set is a collection of stuff

I X = {Apples, Bananas, Oranges}
I X = {x : x is a fruit}
I N = {0, 1, 2, . . .} (set of natural numbers)
I X = {x ∈ N : x/2 ∈ N} (set of even natural numbers)
I Q = {x : x = a/b a, b ∈ Z, b > 0} (set of rational numbers)
I R set of real numbers

Our basic building block. Usually denoted by capital letters like
A,B,C ,X ,Y .
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Sets
Some notation
I x ∈ X , x is an element of set X .

I Y ⊆ X , Y is a subset of X
I If x ∈ Y then x ∈ X .

I X ∪ Y is the union of X and Y , the set of all elements contained in
X or Y .

I X ∩ Y is the intersection of X and Y . The set of all elements
contained in both X and Y .

I X \ Y is the set of all elements in X that aren’t in Y .
I ∅ is the empty set, a set with no elements
I P(X ) (sometimes 2X ), the set of all subsets of X

P({Apples,Bananas} = {{Apples}, {Bananas}, ∅, {Apples,Bananas}}

(if a set has k elements, the power set has 2k elements)
I X × Y , the set of ordered pairs (x , y)
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Real numbers

We are mostly going to work with the set R. This is the set of all
numbers you should be used to dealing with.

An important property of R is the least upper bound property.

Definition (Least upper bound)
Any set X ⊆ R with an upper bound, has a least upper bound,

c = sup X

i.e. c ≥ x for all x ∈ X and if d > x for all x ∈ X then c ≤ d .

A lot of what we are going to do in this class is finding conditions for
when sup X ∈ X . This is clearly true for some sets (like [0, 1]) and not
true for others (like [0, 1)).



Functions

f : X → Y

I Takes each element from X (the domain), maps it to an element of
Y (the range).

I f (x) is value of the function f when evaluated at x ∈ X .

I Examples:
I Utility function u : {Apples,Bananas} → R - how much utility you

get from consuming Apples or Bananas
I Production function f : R2

+ → R, f (L,K ) = LαK 1−α - how much you
produce when you work L hours with K units of capital.

I Choices: C : P({Apples,Bananas,Oranges}) \ ∅ →
{Apples,Bananas,Oranges}, what you would choose from each
possible set of goods
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Linear functions

A linear function f : Rm → Rn is a function such that
I f (x + y) = f (x) + f (y)
I For scalar a, f (ax) = af (x).

Every linear function can be expressed as f (x) = Ax for some A ∈ Rn×m.
A function is affine linear if it is of the form Ax + b for some b ∈ Rn



Linear functions

Even though a affine linear function is defined over all of R, we only need
to know the value of it at a few points to know everything about it.

Makes a lot of things straightforward
I Finding solutions to Ax = b. We know from linear algebra we can

solve this with Gaussian elimination. We also know when a solution
exists and when it’s unique.

I Finding the direction the function is increasing in.
I Finding where linear functions intersect
I ect.

Unfortunately, we want to work with non-linear functions. Can we define
a rich class of functions that sort of work like linear functions?



Our Goal

Theorem (The Extreme Value “Theorem”)
A function f : X → R that satisfies ??? has a maximum.

I Every (bounded) function has a supremum (i.e. sup f (X ))
I Clearly not every function has a maximum.

I f (x) = x on N, R, [a, b)...
I Let’s think a bit about how to prove this.



Extreme Value Theorem

Theorem (The Extreme Value “Theorem’)
A function f : X → R that satisfies ??? has a maximum.

How might we show this?

1. We know c = supx∈X f (x) exists.
2. For any a < c, we know there’s an x ′a such that f (x ′a) ∈ (a, c].
3. Conjecture: xn = x ′c−1/n gets arbitrarily close to the maximizer.
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Vectors

Consider two vectors x , y ∈ Rn.

How do we measure distance. If n = 1 it’s obvious
I The length of x is just |x |, and the distance between x , y is |x − y |.
I We can do the same thing in Rn. The length of a vector is

measured using the norm

||x || =

√√√√ n∑
i=1

x2
i

and the distance between two vectors (called a metric) is
d(x , y) = ||x − y ||.



Distances

These satisfy the properties we might expect a distance to satisfy:
1. ||x || = 0 iff x = 0.
2. ||ax || = |a| · ||x || for every a ∈ R.
3. ||x − y || = ||y − x ||.
4. ||x + y || ≤ ||x ||+ ||y || (triangle inequality)
5. |x · y | ≤ ||x ||||y || (Cauchy-Schwarz inequality)

(There are other functions that satisfy 1-4. At least in Rn, these are equivalent in
terms of defining continuity, open sets, etc. It is occasionally more convenient to work
with ||x ||∞ = max |xi | or ||x ||1 =

∑n
i=1 |xi |.)



Open sets

With our distance, we can define the set of close together points

Definition (Neighborhood)
For any x ∈ Rn and ε > 0 the open neighborhood Bε(x) with center x
and radius ε is defined to be the set of all y ∈ Rn s.t. ||y − x || < ε.

In R, these are open intervals centered around x . In Rn, these are balls
with center x
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Open sets

Using this, we define a bunch of “nice” sets
I x is a limit point of E ⊆ Rn if every nbhd of x contains a y ∈ E ,

y 6= x .
I A set E is closed if E contains all its limit points.
I A point x is an interior point of E if there exists some ε > 0 s.t.

Bε(x) ⊆ E .
I A set is open if every point is interior.
I A set is bounded if there is a M ∈ R s.t. ||x || < M for all x ∈ E .

A set E ⊆ Rn is open iff the complement of E c := Rn \ E is closed.



Some examples

Verify these on your own
I (a, b) is open.
I [a, b] is closed
I {1, 1/2, 1/3, 1/4, . . .} is neither open or closed.
I ∅ is open and closed
I Rn is open and closed.
I Unions and finite intersections of open sets are open.



Sequences

When thinking about these nonlinear things, its often very hard to solve
problems directly
I How do you find the area under a curve?
I How do I find a root?
I How do I find the largest value of a function?

But we can often define a sequence of easier problems that get closer
and closer to the problem we want to solve

Think about our xn’s, f (xn) is getting arbitarily close to the supremum of
f (·).



Sequences

A sequence {xn} is an ordered list of numbers. What happens to this in
the long run?

We say a sequence converges if there exists an x∗ ∈ Rm s.t. for every
ε > 0 there exists an N s.t. if n ≥ N ||xn − x∗|| < ε

If a sequence converges to x∗, we write limn→∞ xn = x∗ or xn → x∗.



Sequences

Sequences may or may not converge
I xn = 1 converges to 1
I xn = n diverges (goes to +∞)
I xn = 1/n converges to 0.

I |0− 1
n | < ε if n ≥ 1/ε.

I xn = (−1)n does not converge or diverge.



Convergence

Theorem
Let {xn} be a sequence in Rn.
I {xn} converges to x ∈ Rn iff every nbhd of x contains all but finitely

many terms of {xn}.
I If {xn} converges to both x and x ′ then x = x ′.
I If {xn} converges then it is bounded.
I If x ∈ E and x is a limit point of E then there is a sequence {xn} in

E s.t. lim xn = x.
I A sequence converges iff each of it’s components converge, e.g.

xn = (x1,n, x2,n, . . . xk,n)→ x = (x1, x2, . . . xk) ⇐⇒ xi ,n → xi for all
i ∈ {1, . . . k}.



Convergence

Convergence tells us that eventually all points in the sequence
approximate the limit point.

Another natural convergence criteria would be the all points in the
sequence eventually behave like each other.

Definition
A sequence is Cauchy if for any ε > 0 there exists an N s.t. if n,m ≥ N
s.t. |xn − xm| < ε

Every convergent sequence is Cauchy, and every Cauchy sequence
converges in R. The second part of that statement is not true in general
(think about 1/n as a sequence in (0, 1] or xn =

√
2 up to the nth

decimal place as a sequence in Q.



Subsequences

Given a sequence {xn}, we can define an infinte sequence of positive
intergers {nk}, n1 < n2 < n3 . . .. The sequence {xnk} is a subsequence.
If the sequence xn converges to x , then so does the subsequence.

Who cares?

Even if a sequence doesn’t converge, maybe we can find a subsequence
that does.



Subsequences

Given a sequence {xn}, we can define an infinte sequence of positive
intergers {nk}, n1 < n2 < n3 . . .. The sequence {xnk} is a subsequence.
If the sequence xn converges to x , then so does the subsequence.

Who cares?

Even if a sequence doesn’t converge, maybe we can find a subsequence
that does.



Subsequences

Given a sequence {xn}, we can define an infinte sequence of positive
intergers {nk}, n1 < n2 < n3 . . .. The sequence {xnk} is a subsequence.
If the sequence xn converges to x , then so does the subsequence.

Who cares?

Even if a sequence doesn’t converge, maybe we can find a subsequence
that does.



Compactness

Definition
We say a set C is (sequentially) compact if every sequence that lies in C
has a convergent subsequence.

I Asking for a set where every sequence converges is way too strong
(why?)

I This is a very nice, strong property.
I Apriori, hard to see if a set satisfies it or not.
I Clearly, compact sets must be closed. What else do we need?



Bolzano Weierstrass

Theorem
Any bounded sequence {xn} has a convergent subsequence {xnk}

I Consider the set I1 = [inf xn, sup xn].
I Cut it in half, one half must have infinitely many points. Let that

half be I2
I Repeat

Then let xn1 be a point in I1, xn2 be a point in I2 s.t. n2 > n1 and so on.
Clearly cauchy so converges.



Compactness

I Previous theorem tells compact if closed and bounded.
I Reverse is also true, closed and bounded if compact.

I This is straightforward to show, if the set is either not closed or not
bounded can you construct a sequence with no convergent
subsequence?



Functions in R

We are mostly going to work with functions that are defined on some
“nice” subset of R
I Lots of our problems are of this form (utility maximization, the

firm’s problem, econometrics)
I For finite sets, our maximization problem is “easy,” just check ever

value
I For infinite sets, our problem seems really hard. R is a natural set

that’s “rich” enough to let us do things
I Think about questions like “where do 2 lines intersect?,” is that

easier to solve in Q or R.



Continuity

Back to our theorem.

Theorem (The Extreme Value “Theorem”)
A function f : X → R that satisfies ??? has a maximum.

I Compactness seems like a promising property for X . Then we have a
subsequence s.t. xnk → x∗ ∈ X .

I Recall supx ′∈X f (x ′)− f (xnk ) < 1/nk .
I So x seems like a natural choice for our maximum



Continuity

Immediately we see our first problem:
I Functions in R can be really messy.
I Need more structure
I Natural bit of structure: Nearby points should “behave similarly”

Definition (Continuity)
A function f : R→ R is continuous at x if for any ε > 0 there exists a
δ > 0 such that for any x ′ ∈ R if |x ′ − x | < δ, then |f (x ′)− f (x)| < ε

The value of the function at x is a good approximation for the value of
the function for close by points.
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Continuity
This is a local property, we say a function is continuous if it is continuous
at every point in its domain.

Examples
I A line is continuous: f (x) = ax + b

I Consider any x ∈ R and some ε > 0.
I Need to find δ such that |ax ′ + b − (ax + b)| < ε.
I So δ = ε/|a| works

I Functions can be continuous at some points but not others

f (x) =
{

x if x ≥ 0
x − 1 otherwise

is continuous everywhere but 0.
I x = 0, ε > 0.
I Need to find δ s.t. |0− (x ′ − 1)| < ε for all x ′ < x , |x ′ − x | < δ.
I But for all x ′ < x , | − x ′ + 1| > 1 so this can never hold for any ε ≤ 1
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Continuity

Continuity is preserved under common operations. For instance, if
f , g : R→ R are continuous, then so is f (x)g(x).
I Fix x and ε > 0.

|f (x)g(x)− f (x ′)g(x ′)| = |g(x)(f (x)− f (x ′)) + f (x ′)(g(x)− g(x)′)|

I Is there a δ s.t. |g(x)||f (x)− f (x ′)|+ |f (x ′)||g(x)− g(x)′)| < ε?
I We know there’s a δ1 s.t. if ||x − x ′|| < δ1

|f (x)g(x)−f (x ′)g(x ′)| < |g(x)||f (x)−f (x ′)|+(|f (x)|+1)|g(x)−g(x)′|

.



Continuity

I There’s a δ < δ1 s.t.

|g(x)− g(x ′)| < ε

2(|f (x)|+ 1)

and if g(x) 6= 0
|f (x)− f (x ′)| < ε

2|g(x)| .

I So if ||x − x ′|| < δ

|f (x)g(x)− f (x ′)g(x ′)|
< |g(x)||f (x)− f (x ′)|+ (|f (x)|+ 1)|g(x)− g(x)′|
≤ ε/2 + ε/2



Continuity

I Good things: Continuity is preserved under composition, i.e. if f , g
are continuous, then so is f ◦ g .

I Preserved under things like addition, multiplication etc.
f + g , f − g , f · g are continuous if f and g are.

I A function is continuous iff for every open set E , the set f −1(E ) is
open



Continuity

There’s nothing special about R, we can easily generalize our definition
to vectors in Rn.

Definition
A function f : Rm → Rn is continuous at x if for any ε > 0 there exists a
δ > 0 such that for any x ′ ∈ R if ||x ′ − x || < δ, then ||f (x ′)− f (x)|| < ε

We our now using the norm to measure distance. Everything we’ve said
previously holds here.



Continuity
The fact that we had all these δ > 0’s in both our definition of continuity
and convergence should be a hint that there is a connection between the
two.

Theorem
A function f : Rn → Rm is continuous at x iff for every convergent
sequence (xn)∞n=1, xn → x, then f (xn)→ f (x).

So continuous functions preserve limits.

If sequences xn → x and

yn → y , then
I xn + yn → x + y
I xnyn → xy
I xn/yn → x/y as long as y , yn 6= 0

Some other useful facts about sequences:
I If xn ≥ yn then x ≥ y .
I If xn > yn then x ≥ y
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Optimization

Now we can go back to our maximization problem:

max
x∈X

f (x)

where f : Rm → R. When does a solution to this exist?



Extreme Value Theorem

Theorem (Extreme Value Theorem)
Suppose X is compact and f is continuous. Then maxx∈X f (x) exists.

Proof:
I Let c = supx∈X f (x). This either exists or is +∞. Let’s suppose it’s

finite.
I There exists a sequence {xn} s.t. c − f (xn) < 1

n .
I By construction f (xn)→ c.
I X is compact, so (xn)∞n=1 has a convergent subsequence (xnk ).
I f (xnk ) converges to some x ∈ X , so f (xnk )→ f (x) = c.

(if c is infinite, just replace step 2 with f (xn) > n to get a contradiction).



Extreme Value Theorem
We have a pretty nice theorem that tells us when a max exists. Just need
to check 2 things.
Compactness:
I Can we find an interval [a, b]n that contains X . Is X closed?
I If X is compact, and g is continuous, then so is g(X ).
I g−1(X ) is closed if X is closed, g continuous, e.g. {x : g(x) ≤ 0} is

closed
Continuity:
I Most functions you are used to dealing with, and are commonly used

in 1st year economics are continuous.
I Utility functions, cost functions, etc.
I But sometimes we run into discontinuous things, e.g. price

competition

D(p1, p2) =


p1(a − p1) if p1 < p2

p1
a−p1

2 if p1 = p2

0 o.w.



Take-aways

We have a pretty nice theorem that tells us when a max exists
I Pretty useful, even when we can’t compute explictly a max, we

know there is one.
I We can show properties of the max and have them be meaningful
I “Easy” to check, most things we work with are continuous/compact.
I Holds in general for problems in Rn.


