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This note summarizes some of the background concepts relating to

vector spaces and matricies.

Vectors and Vector Spaces

In this course, we mostly work in the vector space Rn. That is, or-

dered n-tuples of real numbers (v1, v2, . . . vn) along with two oper-

ations, addition and scalar multiplication. We can add two vectors

by adding the components together, and we can “scale" a vector by

multiplying it by a real number (called a scalar). We can think about

vectors as a way to express length and direction, which is why in

some classes you may have seen them drawn as arrows that start at

the origin and end at the n-tuple.

A few important concepts

Definition. A linear subspace S ⊆ Rn is a set such that

1. u, v ∈ S ⇒ u + v ∈ S

2. v ∈ S ⇒ av ∈ S for every scalar a ∈ R

A subspace S is a set we can’t “escape" through applications of

our vector space operations. So this is a vector space that lives “in-

side" of Rn It is also convenient to think about when vectors can be

represented using other vectors

Definition. We say a set of non-zero vectors {v1, v2 . . . vk} are linearly

dependent if there exist scalars {a1, a2, . . . ak}, at least one non-zero such

that
k

∑
j=1

ajvj = 0

Otherwise they are said to be linearly independent

Any set of linearly independent vectors essentially describes a

linear subspace (the set of vectors we can make using addition and

scalar multiplication) and any linear subspace can be described in

terms of a collection of linearly independent vectors.1 Given any 1 Any collection of more than n vectors
must be linearly dependent. It is a
system of n linear equations with k > n
unknowns.



matrix algebra 2

collection of vectors {v1, v2, . . . vk}, this subspace they describe S =

{u : u = ∑k
i=1 αivi, αi ∈ R} is called the span.

We often talk about the dimension of a space. Intuitively Rn has

dimension n. This captures the number of “independent" directions

we can move in in Rn (e.g. vertically and horizontally in R2). We can

define a similar concept for an arbitrary linear space S.

Definition. A vector space S ⊆ Rn has dimension k if there exists a

collection of linearly independent vectors V = {v1, v2, . . . vk} such that

S = span(V). V is then a basis of S.

Every linear space has a basis and every basis has the same num-

ber of elements.2 2 These things both seem obvious, but
turn out to require a bit of work to
prove. If you want some practice with
the concepts, proving these yourself
may be a good idea.

A vector operation you probably remember is the dot product,

or inner product (written as either u · v or ⟨u, v⟩). This is given by

u · v = ∑n
i=1 uivi.3 We can use this to compactly write linear equations 3 Geometrically R2, it’s easy to see that

u · v > 0 if the angle between any two
vectors is acute, u · v < 0 if it’s obtuse
and u · v = 0 if they are orthogonal.
This gives us a natural notion of these
concepts for Rn, n > 2.

v1x1 + v2x2 + . . . vnxn = c

as v · x = c. If we have a system of multiple equations vj · x = cj we

can write this as a matrix Vx = c, where x and c are column vectors

and V is a matrix with rows equal to the vj’s.4 4 The product of any two matricies AB
is the matrix C where (C)ij is the dot
product of the ith row of A with the jth
column of B. Somewhat annoyingly,
we can’t multiply every matrix, this
only makes sense if A ∈ Rm×n and
B ∈ Rn×k , which yields a matrix
C ∈ Rm×k . Moreover, AB ̸= BA, even
if the dimensions are such that AB and
BA are both well defined.

Matricies

Consider the equation

Vx = c.

You probably know some ways to solve this for a specific V and

c.5 The more important questions for our purposes are (i) does this 5 Some you may remember.

1. Gaussian elimination

2. LU, QR, and/or Cholesky decompo-
sition

3. Cramer’s rule

4. linsolve(V,c)

have a solution, (ii) if so, how many. The theory from the previous

section gives us an equivalent formulation for (i), does c lie in the

subspace given by the span of the columns of V. More subtly, (ii) can

be formulated as the question, what is the dimension of the subspace

given by vectors that solve Vx = 0?6 The former space is called the 6 If x solves Vx = c and y solves Vy = 0
then V(x + y) = c. Similarly if Vx = c
and Vy = c then V(x − y) = 0. So a
system of equations has at most one
solution if and only if the kernel is 0
vector. Otherwise it has infinitely many
solutions.

column space, the latter is called the kernel or null space. We can

define the row space similarly. These are all vector spaces. Note that

every vector in the kernel is orthogonal to every vector in the row

space.
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Theorem 1. Given matrix V ∈ Rm×n, the dimension of the row space

(called the rank of the matrix) and the dimension of the kernel add up to n.

The rank of a matrix is thus the number of linearly independent

rows. Equivalently, it can be show to be the number of linearly in-

dependent columns. A m × n-matrix is said to be full rank if it has

rank min{m, n}, i.e. if it has the maximal possible rank. The previous

theorem almost directly implies the “Fundamental Theorem of Linear

Algebra"

Theorem 2. Let U be the set of solutions to V · x = c where V ∈ Rm×n,

c ∈ Rm. If U ̸= ∅ then U is then an affine subspace7 and 7 An affine subspace is essentially
a vector space that doesn’t have to
include the origin, i.e. U is affine if
there exists a vector w ∈ Rn and a
linear subspace S ⊆ Rn s.t. U = w + S.
We can define dimension in the obvious
way.

dim(U) = n − rank(V).

This, together with the observation that a solution exists iff c is the

column space we can answer (i) and (ii) about Vx = c.

1. If rank(V) = n then the system of equations has exactly one

solution if the augmented matrix [V|c] (V with the additional

column c) satisfies rank(V) = rank([V|c]).8 8 This augmented matrix thing is a
fancier way to express the c living the
column space condition. If rank(V) =
m, then it holds for any c. Otherwise it
does not hold for some cs.

2. If rank(V) < n then this has infinitely many solutions if the aug-

mented matrix [V|c] satisfies rank(V) = rank([V|c]).

3. Otherwise it has no solution.

A special case is when V ∈ Rn×n and has full rank. This is called

a non-singular matrix and we can find a matrix V−1 where the ith

column solves

Vx = ei

where ei is the vector that is 1 in the ith component and 0 in all oth-

ers. This is called the inverse matrix as

VV−1 = V−1V = I

We can then easily solve any system of linear equations as x = V−1c

is the unique solution to Vx = c by properties of matrix multiplica-

tion.

Finally, we can talk about linear functions, i.e. functions f : Rn →
Rm where f (ax + by) = a f (x) + b f (y) for any scalars a and b and
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any x, y ∈ Rn. Any such function can be expressed as f (x) = Ax

for some matrix A ∈ Rm×n. The above observation gives us that if

rank(A) = m then this is injective, if rank(A) = n then it is surjective.


