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This note summarizes some of the key concepts from the second set

of lectures.

Derivatives
Economic “applications” of derivatives
(beyond finding maxes)

1. Comparative statics: How do en-
dogenous choices respond to small
changes in exogenous parameters.
How much does a small change in
price change demand?

2. Dynamics: Allows us to describe
dynamics. How does an economy
change over time? Is an economy
going to approach a specific steady
state?

We have a class of functions that are easy to work with and we un-

derstand very well (linear functions) and another larger class of

functions that are at least in principle “well-behaved” (continuous

functions). Can we leverage the tractability of the former to help us

analyze the latter? The derivative, when it exists, gives us a tool that

does exactly that. The gradient of a function, denoted

∇ f (x) =
(

∂ f (x)
∂x1

,
∂ f (x)

∂x2
, . . . ,

∂ f (x)
∂xn

)T

linearizes f at x, in the sense that for any x̂

f (x̂) = f (x) +∇ f (x) · (x̂ − x) + o(x̂ − x).

So for values close to x, there is a linear function that approximates f

that has “slope” ∇ f (x).1 2 For a twice differentiable f : Rm → R we 1 Similarly the Taylor expansion let’s us
approximate a continuous function with
a polynomials by using higher order
derivative. The higher the degree of the
polynomial approximation, the faster
the approximation error vanishes.
2 For a function f : Rm → Rn, we
denote the derivative matrix as

D f (x) =


∂ f1(x)

∂x1
. . . ∂ f1(x)

∂xm
...

. . .
...

∂ fn(x)
∂x1

. . . ∂ fn(x)
∂xm


Note that for a function that maps to R,
D f (x)T = ∇ f (x). In the next section, I
use Dx to denote the derivative matrix
with respect to x (which may be a
vector).

can write the second derivative matrix/hessian

D2 f (x) =


∂2 f (x)
∂x1∂x1

. . . ∂2 f (x)
∂x1∂xm

...
. . .

...
∂2 f (x)
∂xm∂x1

. . . ∂2 f (x)
∂xm∂xm

 .

For most functions this matrix is symmetric.3 We can use this to

3 Young’s theorem.

construct even better approximations using the Taylor expansion, for

any twice continuously differentiable function

f (x̂) = f (x)+ (x̂− x)T∇ f (x)+
1
2
(x̂− x)T D2 f (x)(x̂− x)+ o((x̂− x)2).

Unconstrained Optimization

The derivative gives us a tool to find local maximizers and minimiz-

ers.
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Theorem 1 (First order conditions). The gradient at an interior local

maximum is 0.

So, for any maximum x∗ that occurs on the interior of the domain,

a necessary condition is that ∇ f (x∗) = 0. This provides us with a set

of candidate maximizers, called critical points.

First order conditions are necessary, but not sufficient for a maxi-

mizer. 4 The second derivative gives us a second test to help narrow 4 Clearly, this must also hold at mini-
mizers. This can also hold at points that
are neither, e.g. x = 0 for the function
f (x) = x3.

our search:

Theorem 2 (Second order conditions). At any critical point x∗ of f if

D2 f (x∗) is negative definite then x∗ is a local maximum. If x∗ is a local

maximum then D2 f (x∗) is negative semidefinite.
This gives us a good way to look for
maximizers of a function f if it is twice
differentiable.

1. First, find all points where ∇ f (x) =
0.

2. Then look at D2 f at those points:

(a) If D2 f (x) is not negative semi-
definite, it’s not a max.

(b) If D2 f (x) is negative definite, it
is a (local) max.

(c) If D2 f (x) is negative semi-
definite, it could be a local max.

3. To find the global max, compare
the values of f at the points you
found in step 2b, c and the points on
the boundary/where the function
wasn’t differentiable.

The Implicit Function Theorem

Consider functions f : Rn+m → Rn. We are often going be confronted

with problems where for any given vector of exogenous variables

x ∈ Rm, we know the corresponding endogenous variables y ∈ Rn

solve an equation of the form5

5 For instance, the first order conditions
of the consumer problem tell us that if
there are two goods x1, x2 being sold
for prices p1, p1 then at the optimum
the consumer sets the marginal rate of
substitution equal to the ratio of the
prices, e.g.

u1(x1, x2)

u2(x1, x2)
− p1

p2
= 0.

The prices are exogenous, while the
amount of goods 1 and 2 consumed are
endogenous.

f (y, x) = 0.

A natural question to ask would be “How does y change as x varies?”

If there was a nice, differentiable y(x) that solved this equation at

each x, then we’d know exactly what to do. Using the chain rule

Dx f (y(x), x) = Dx0

Dy f Dy + Dx f = 0

Dy = −(Dy f )−1Dx f .

But, for most problems it’s not clear that such a y exists, much less is

differentiable. The implicit function theorem tells us when we can do

something like this:

Theorem 3 (Implicit Function Theorem). Let (x∗, y∗) solve f (y∗, x∗) =

0. Then if Dy f (y∗, x∗) has full-rank, in a neighborhood of x∗ there exists a

unique differentiable y s.t. f (y(x), x) = 0 and y(x∗) = y∗. Moreover, in

this neighborhood

Dy = −(Dy f )−1Dx f .
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Optimization with Equality Constraints

Consider a maximization problem of the form

max
x∈Rm

f (x)

s.t. g(x) = 0

for f : Rm → R, g : Rm → Rn. The extreme value theorem tells us Maximizing utility subject to spending
your entire budget

max
x∈Rm

u(x)

s.t. p · x − m = 0

is probably the most familiar of these.

that for continuous f and nice enough g, this has a solution. It would

be nice to have something like first order conditions to help us find

it. In class, we used the implicit function theorem to show that at any

maximum x∗, if Dg has full rank then

∇ f (x∗) = λT Dg(x∗)

for some λ ∈ Rn. The λ’s are called Lagrange multipliers.6 So, as 6 There are second order conditions
for these, but they are annoying so
we aren’t going to talk about them.
Appealing to the concavity of the
objective and the convexity of the
feasible set is mostly what you’ll do in
the first year. More on this in the next
sets of lectures.

with unconstrained optimization problems, we can turn the prob-

lem of finding a maximum into the problem of solving a system of

(potentially non-linear) equations, with the additional headache that

we’ve added an “extra” variable for each constraint (the λ).


