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Welcome to the intensive week!

Daily schedule:
9.15  -  11.00  Introduction and in-
class exercises
11.00 -  14.00  Pairwork and lunch
14.00 -  15.30  Project presentations 
and wrap-up

Monday June 3
Performance
Tuesday June 4
Cognition
Wednesday June 5
Error
Thursday June 6
Experiments
Friday June 7
Systems engineering



Today

Morning 9.15-11
Introduction
Pairwork topics

Pairwork + lunch 11-14

Afternoon 14-15.30
Project presentations

1. Motivation
2. HFE
3. Perception
4. Motor control
5. Pairwork topics

4.6.2024
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3 inclass exercises



Example student project: HSL card 
reader redesign case
[PDF]

4.6.2024
4

Our focus today:
1. Minimize expected selection time
2. Optimize visual flow
3. Minimize task completion time



Preparations

1. Let’s form pairs 2. Open the answer document

https://shorturl.at/QjXyG

4.6.2024
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Motivation
Why study human factors?

4.6.2024
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1. Motivation
2. HFE
3. Perception
4. Motor control
5. Pairwork topics



Understanding users is a top 3 reason 
for failure/success of IT projects

4.6.2024
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[Miettinen et al. 2011]

Also: 10-30% of R&D 
budgets goes to user 
interfaces  



Design of technology affects well-being

4.6.2024
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4.6.2024
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Humans are beyond intuition

Can you read this?

4.6.2024
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Aoccdrnig to  rscheearch at Cmabrigde Uinervtisy, it 
deosn't mttaer in waht oredr the ltteers in a wrod are, 
the olny iprmoetnt tihng is taht the frist and lsat ltteer 
be at the rghit pclae. The rset can be a total mses and 
you can sitll raed it wouthit porbelm. Tihs is bcuseae 
the huamn mnid deos not raed ervey lteter by istlef, 
but the wrod as a wlohe.





Find the Calendar icon:

+

People are 
different



Good design reduces complexity

4.6.2024
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Poor design is a cause of death

4.6.2024
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Design impacts a large number of people

4.6.2024
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Legal responsibility

4.6.2024
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Reduce development costs
The later you account for human factors, the more it costs

4.6.2024
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HSI Practitioner’s Guide 

 
1-9 

Expanding on this last point, as noted earlier, the DoD made HSI mandatory when faced with 
alarming, unanticipated cost escalation in deploying new weapon systems.  Much of the 
unexpected cost growth was due to personnel costs in systems’ operations phase—i.e., it took 
more people and more advanced skills to operate, maintain, and logistically support systems than 
was planned.  Faced with the awareness of cost growth in the human elements needed to make 
and keep systems operational, HSI was seen as a methodology to focus on systems’ full LCCs—
conception through operations—starting at the outset of new programs and projects.  Figure 1.4-
2, based on a figure from the INCOSE Systems Engineering Handbook (2007), shows that LCC 
of a program or project are “locked in” early in programs or projects.   

Although this early pre-determination of systems’ LCC may apply to any element of systems’ 
design whose consideration is neglected in the early P/P, it is particularly noteworthy for HSI, 
since hardware and software system designers quite often focus on technology development to 
the detriment of considering the human elements of a system.  A discussion of the LCC effects of 
HSI is contained in section 4.4.9 of this HSIPG . 

 

Figure 1.4-2 Life Cycle Cost with Overlay Showing “Locked-in” Costs 

  

“Locked in costs”



Fight dark patterns

4.6.2024
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Dark patterns 2: 
advertisements

4.6.2024
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Innovate new experiences

4.6.2024
20Microsoft IllumiRoom



Envision new work practices



Compete with usability

4.6.2024
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Optimize user performance

4.6.2024
23



Recover from human errors

4.6.2024
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Understand emergent phenomena
Case in point: Zoom fatigue

4.6.2024
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Summary: Why study human factors?

1. Increase efficiency, enjoyability, and robustness of technology
2. Avoid catastrophies and loss of life
3. Offer proofs and guarantees for design
4. Improve the hit rate of products with user-centered design
5. Reduce development time of ICT
6. Harness new technological innovations quicker



Human factors 
engineering

4.6.2024
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1. Motivation
2. HFE
3. Perception
4. Motor control
5. Pairwork topics



Human-centricity: 
Human is the criterion for decisions
Human factors starts from human needs, limitations, and capabilities

• Perception
• Attention
• Motor control
• Reasoning
• Sensory capabilities
• Working memory
• Long-term memory and learning
• Biomechanics and anthropometrics
• Needs, motivations
• ...

4.6.2024
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Formulate measurable objectives 
related to people
Some human-related objectives for engineering
Improve effectiveness 
Improve efficiency
Improve safety
Improve satisfaction
Improve experience
Decrease errors 
Reduce fatigue
Reduce the learning curve
Ensure operability and usability
Meet user’s needs and wants
Positive perception of product



Key design goals

Fit
• Does the product meet the users needs and expectations?  Are the right features 

included, do they—and can they—use those features?
Errors
• Objective measure provided by the overall task error rate and the frequency and severity 

of the error.  How many users make mistakes and are they able to recover?  
Efficiency
• Objective measure yielded by time on task.  How long does it take the user to complete 

the task?  Often correlated with satisfaction.
Satisfaction
• Satisfaction measures are subjective measures provided by the user.  
Learnability
• How easy the system is to learn.  Can be expressed by a learning curve and typically is 

associated with error and efficiency rates over time to show trending 4.6.2024
30



Engineering: Beyond luck and intuition

Understanding: Identify factors behind human performance, 
error, behavior and experience
Analysis: Quantify and compare properties of systems
Optimize: Use models and simulations to find best possible 
designs
Quality guarantees: Offer guarantees for solutions, implement 
them in standards and methods
Insight: Facilitate idea-generation



A multi-disciplinary field

Human factors engineering (HFE) 
• Integrates human considerations within the system 

development process 
• A comprehensive, multidisciplinary, technical and 

management process
• Ensures that the human contribution toward system 

performance is consistently addressed throughout the 
system life cycle



Models and simulations example: 
Distract-r

Dario Salvucci



Multiple levels of analysis

4.6.2024
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107 (months) SOCIAL Social Behavior
106 (weeks)
105 (days) 
104 (hours) RATIONAL Adaptive Behavior 
103   
102 (mins)  
101 COGNITIVE Overt Behavior 
100 (sec) 
10-1    
10-2 BIOLOGICAL Physiological events
10-3 (msec) 
10-4 



A human-centred design process

Define Context Specify Requirements

Create DesignEvaluate Design

Design Complete

Identify Need

There are 5 fundamental steps to the process:
• Identify need for new technology based on user research
• Define the context of use: what are the tasks or objectives associated with the design.
• Specify requirements:  what expectations or requirements must the design 

accommodate
• Create design solutions: prototyping, rendering, mockup building
• Evaluate designs: modeling, usability testing, and ergonomic assessment

NASA’s Human Factors Process



Perception
4.6.2024
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1. Motivation
2. HFE
3. Perception
4. Motor control
5. Pairwork topics



Q: I will show a 
web page. Note 
down 3 regions 
that you fixated 
first



What did you look at?

4.6.2024
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4.6.2024
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interfacemetrics.aalto.fi



Q: Why do users 
look at these 
regions first?



Visual perception

4.6.2024
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Learning objectives in this block

1. HVS: Basics

• “7 windows of visibility”
• Selective attention

2. Visual saliency

• Simulation models
• Deep learning models
• Perceptual clutter

Slides

External Web service



Assignment: Saliency optimization

Example from last year

4.6.2024
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Human visual 
system: Basics

4.6.2024
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Vision is one of human 
sensory modalities
A sensory modality transduces physical stimulation into 
electrochemical reactions in neurons for processing in the brain

Vision (seeing)
Audition (hearing)
Tactition (touching)
Olfaction (smelling)
Gustation (tasting)
Proprioception (limb position)

This lecture



Scientific perspectives to HVS 

Anatomical view
Physiological view
Developmental view
Neuroscientific view
Cognitive view
Behavioral view

4.6.2024
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This lecture

This lecture



COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Human vision

11/22/2019

5

The eye

4.6.2024
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The retina

http://2012books.lardbucket.org/books/beginning-psychology/s08-02-seeing.html

The retina is made up of layers of neurons that respond to light

Light falling on retina activates (1) receptor cells 

(i.e., rods and cones) which in turn activate 

(2) bipolar cells and then (3) ganglion cells  

through cascading photochemical reactions 

that transform the light into neural impulses, 

which carry visual information via the optic 

nerve to the visual processing areas in the 

visual cortex at the back of the brain where 

meaningful images are composed

optic nerve = a collection of ganglion cells

ganglion = a cluster of nerve cells (also known as neuron) existing outside the central nervous system
ganglion cell = a cell (or neuron) in a ganglion
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Receptor cells
 

http://2012books.lardbucket.org/books/beginning-psychology/s08-02-seeing.html

Rods and cones are visual neurons 

RODS:  detect black/white/grey colours but not much detail

              function best in dim light

              located around the edges of the retina

             ~120 million in each eye

 

CONES:detect fine detail and colours

     function best in bright light

     densely packed in fovea (centre of retina)

    ~5 million in each eye

Example: When focusing on 1 word in the text, neighbouring words seem blurred as
the word in focus is mapped onto the cones, while others are mapped onto the rods
which detect much less detail than the cones (remember that acuity is maximum at fovea)

Cone
 

Rod
 



Distribution of receptors on retina

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Human vision

11/22/2019

7

Lin et al. (2012) SNR analysis of high-frequency steady-state visual evoked potentials 

from the foveal and extrafoveal regions of Human Retina
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From the retina to the brain

http://2012books.lardbucket.org/books/beginning-psychology/s08-02-seeing.html

Later...



“Windows of 
visibility”
By Colin Ware 2012

52



Windows of visibility

Important limits to HVS
1. Wavelength
2. Field of view
3. Trichromaticity
4. Luminance
5. Spatial frequency
6. Local contrast
7. Fixation



1. Visible wavelengths



2. Field-of-view window

Almost 180 degree horizontal vision
Color vision narrower than vision for shape and motion



3. Trichromaticity window

ELEC-E7850 Fall 2014 - 57



4. Intensity window

candela (cd) is a unit of luminous flux per unit solid angle



5. Local contrast window

ELEC-E7850 Fall 2014 - 59



Local contrast computation

ELEC-E7850 Fall 2014 - 60



Visual angle

ELEC-E7850 Fall 2014 - 62



6. Spatial frequency window

ELEC-E7850 Fall 2014 - 63



Spatial frequency

original low frequencies
only



Contrast sensitivity function (CSF)

ELEC-E7850 Fall 2014 - 65



7. Window of fixation (“attentional spotlight”)

ELEC-E7850 Fall 2015 - 67
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Perceptual processing 
Stage 1. Parallel processing to extract low-

level properties of the visual scene
• rapid parallel processing
• extraction of features: orientation, colour, texture, 

movement patterns
• iconic store
• bottom-up, data driven processing

Stage 2.  Pattern perception
• slow serial processing
• involves memory
• arbitrary symbols relevant
• different pathways for object recognition 

and visually guided motion

Stage 3. Sequential goal-driven processing
[Ware, 2012]



Visual attention
69



Next slide: A “game”





Eye movements

Saccade (30-50 ms)
- Moves the gaze point
- Nothing is ‘seen’ when saccading

ELEC-E7850 Fall 2015 - 72

Fixation (200-400 ms)
- Extracts information
- Jittery 



Data by Markku Laine and Crista Kaukinen



Selective attention
Feature search (pop-out): Visual search based on a 
discriminative feature: color, shape, size, orientation (FAST!)

Conjunctive search (SLOW!)



Feature search
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“Serial” vs “Parallel” Search

         Set size
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Q: Which UI elements can be found with 
1) feature search, 2) conjunction search? 





Visual saliency
4.6.2024
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Saliency

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Saliency

Saliency is the underlying mechanism that drives attention

When something stands out from its neighbors, it grabs our attention

11/22/2019

8

Saliency refers to the probability with which a feature can grab 
our attention within 1-3 seconds from stimulus onset



COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)



COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)



COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)



COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)



Experimental research on visual 
saliency
Show a novel stimulus, track first 1-3 seconds of where 
participants look at

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Study setup



Top-down (learned) biases

Center bias 
Horizontal bias 
Color bias 
Text bias 
Face bias 

4.6.2024
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Center bias

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Center bias

11/22/2019

55



Horizontal bias

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Horizontal bias

11/22/2019
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Color bias

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Color bias

11/22/2019

57



Text bias

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Text bias

11/22/2019
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Face bias

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Face bias

11/22/2019
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Top-down and bottom-up aspects of 
saliency
Bottom-up saliency: memory-free, based on activation of feature 
detectors (”image-dominated”)

Top-down saliency: learned, memory-dependent, task-oriented, 
adaptive. ”Biased”.

Saliency also depends on the person: Experience, emotions, 
context, etc. 

4.6.2024
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Saliency models

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Saliency models

11/22/2019

23

Input

Output

Overlay



Overview of models

Bottom-up 
• Itti et al., 1998 
• Harel et al., 2007 
Top-down 
• Yang & Yang, 2017 
• Tanner & Itti, 2019 
Hybrid 
• Torralba, 2003
• Borji, 2012 

4.6.2024
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Itti et al. 1998

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Itti-Koch model

11/22/2019

25

L. Itti et al. (1998) A Model 

of Saliency-based Visual 

Attention for Rapid Scene 

Analysis

The Itti-Koch 
bottom-up 
model



GBVS

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

GBVS model

11/22/2019

26

J. Harel et al. (2007) 

Graph-Based Visual 

Saliency

Harel et al. 2007



Examples
Source (a), Itti-Koch prediction (b), GBVS prediction (c) 

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

(a)

(b)

(c)

Source images (a) and saliency estimation by Itti-Koch (b) and GBVS (c) models



Deep visual 
saliency models

4.6.2024
98



Many models

COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Deep visual saliency models

 Huang et al. (2015) SALICON: Reducing the Semantic Gap in Saliency 

Prediction by Adapting Deep Neural Networks
 Cornia et al. (2016) A Deep Multi-Level Network for Saliency Prediction
 Pan et al. (2016) Shallow and Deep Convolutional Networks for Saliency 

Prediction
 Pan et al. (2017) SalGAN: Visual Saliency Prediction with Generative 

Adversarial Networks
 Kruthiventi et al. (2017) Deepfix: A fully convolutional neural network for 

predicting human eye fixations

See https://arxiv.org/pdf/1810.03716.pdf And many more!



Convolution

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

https://towardsdatascience.com/3fb6f2367464 

Architectures



CNNs vs human brain

4.6.2024
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https://www.nature.com/articles/s42003-018-0110-y



A popular CNN: ResNet

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Popular CNN: ResNet



Saliency Attentive Models (SAM)

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Saliency Attentive Model (SAM)

Cornia et al. (2018) Predicting Human Eye Fixations via an LSTM-based Saliency 

Attentive Model



UMSI: Unified model of saliency and 
importance

4.6.2024
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Model training

1. Pre-train on SALICON (a large non-
design dataset) to learn image features 
generally relevant for saliency. 

2. Fine-tune on a design-specific dataset 
(IMP1K). Mix SALICON images to the fine-
tuning data to prevent ''forgetting'' them. 



Applications
4.6.2024
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Driver attention prediction

4.6.2024
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Evaluation of UI designs

4.6.2024
107COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Applications: Design evaluation

11/22/2019

18



Example

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Applications: Design evaluation

11/22/2019

19



Grabbing attention to a situationally 
important element

4.6.2024
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Saliency editing

4.6.2024
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Increased the probability 
of attention to a desired 
region from 20% chance 
to 60%!

Hakiwara et al. PETMEI 2011



Visual flow optimization (UMSI)

4.6.2024
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A deeper look into 
user interfaces

4.6.2024
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User interfaces...
...are they special?

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

What about mobile interfaces?



4.6.2024
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Empirical results

Top-left location bias

No center bias, no horizontal bias

No color bias

Leiva et al. MobileHCI2020



4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Empirical results

Text and image bias

No size bias

Leiva et al. MobileHCI2020



COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Modeling resultsModel predictions

Leiva et al. MobileHCI2020



Model predictions

COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Modeling results

Leiva et al. MobileHCI2020



Terminals differ in low-level features

4.6.2024
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COMPUTATIONAL USER INTERFACE DESIGN (Fall 2019)

Visual saliency in mobile UIs

11/22/2019

52Leiva et al. MobileHCI2020



Clutter
“The evil twin of saliency”

4.6.2024
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Q: What makes this cluttered?

“Like clutters like”
Objects with similar features (color, size, 
orientation, shape) congest each other
Quantity or density of objects



Previous measures of clutter
Number of visible objects 
(Woodruff et al. 1998)
Number of data points per unit area 
(Tufte 1983)
Quantity of countours, edge density, color variability 
(Mack & Oliva 2004)
Ink per unit area 
(Frank and Timpf 1994)
Density measures (Nickerson 1994)
• # of graphic tokens per unit area
• # of vectors needed to draw the visualization
• Length of the program needed to generate the visualization



Clutter

ELEC-E7850 Fall 2014 - 123

Q: Where would you place a note?



Q: How would you place an element?

Seek uniqueness in
Color
Orientation
Shape
Size



criterion for when to stop looking when the observer has
not found the target. However, even in complex displays
generated by the experimenter, the set size of the display
is often unclear. In the map shown in Figure 2, is a
mountain range an item or multiple items? Does a single
raindrop constitute an item? The outline of a state? In
natural images, where the experimenter does not control
the display, determining the number of items in the
display becomes extremely difficult even given a reason-
able definition of what constitutes an “item.”
We propose that visual search research requires, for

complex imagery, a concept of visual clutter as a stand-in

for the standard concept of set size. In the following
section, we discuss what one might want from a measure
of clutter. Then, we suggest a broad operational definition,
followed by more specific candidate definitions, which
will allow us to derive several measures of the level of
clutter in a display. One such measure, the Feature
Congestion measure of clutter, makes use of extensive
modeling of what makes items in a display visually
salient. Another is based on the notion that visual clutter is
related to the amount of visual information in a display.
Finally, we test Edge Density measure of clutter,
suggested by Mack and Oliva (2004), as a measure of
subjective image complexity. In general, these clutter
measures correlate well with the influence of a complex
background on search performance both in previous
search results from other researchers and in our own
experiments.
Visual search is a common subtask in many real-world

visual tasks. A user must find buttons or other components
of a user interface. An alert system must draw attention to
a relevant part of a display so that the user can find it
easily. Comprehending information visualizations also has
a significant visual search component. By having an
understanding of how clutter plays a role in visual search,
we take a significant step toward understanding the role of
clutter in many real-world visual tasks.

Clutter as a stand-in for set size

In substituting a notion of clutter for one of set size, we
do not merely want to try to count the number of items in
more complex displays. In the first place, this is currently
unrealistic, given the state of computer vision algorithms.
Furthermore, as mentioned in the previous section, items
are ill-defined. What is an item in a natural scene such as
that in Figure 1B: Is it a person? A shirt? A cup in a stack
of cups? A branch on a tree? Furthermore, Bravo and
Farid (2004) have argued that items are not even the unit
of relevance, suggesting instead that the number of “parts”
is more relevant to search performance.
By analogy with the notion of set size, we should not

expect a measure of clutter to predict, by itself, search
performance. In standard RT versus set-size performance
curves, as in Figure 3, set size interacts with something
like target–distractor discriminability to determine search
difficulty. (Here, we may not mean target–distractor
discriminability in exactly the sense of threshold in a
single-item discriminability experiment because we may
need to take into account greater search inefficiency in
spatial-configuration or conjunction search situations,
which may not entirely be captured by traditional
discriminability. We use the term “discriminability” here
more loosely.) In a simple view of visual search, target–
distractor discriminability determines which curve

Figure 1. (A) Typical display for visual search experiments versus
(B) a more complex, natural image.

Journal of Vision (2007) 7(2):17, 1–22 Rosenholtz, Li, & Nakano 2

describes search performance. Set size determines essen-
tially where a stimulus lies on a particular performance
curve; that is, it determines the x-value. Together, the two
(curve plus x-value) predict the performance, for example,
RT. Similarly, we would expect clutter to interact with
discriminability to predict search performance in complex
imagery.
Additional factors also influence search performance.

Of particular importance for the issues of clutter and set
size is the effect of top–down information on visual
search. When a cue indicates that the target will appear at
a subset of possible locations in a display, RTs are a
function of the relevant (cued) rather than the nominal set
size (Palmer, 1994; Palmer, Ames, & Lindsey, 1993).
Features of the target may also cue a subset of potential
items as possible targets, again effectively reducing set
size. Furthermore, researchers have shown that in complex
natural scenes, expertise such as prior knowledge about
regions likely to contain a target, such as a pedestrian, can
limit eye movements during search to those regions
(Torralba et al., 2006). In testing our measure of visual
clutter, we propose to initially minimize these top–down
effects by focusing on search for categorical targets in
situations that minimize prior knowledge about likely
target locations. (If one were trying to determine whether
set size is relevant for search performance, one would not
first perform experiments in which relevant set size is
unknown and differed from nominal set size.) Once we
have confidence in a measure of visual clutter, such a
measure can help us better evaluate experimental results

involving more complex stimuli and search tasks, includ-
ing those with significant top–down components.
Our goals for this article are to derive, implement, and

test several initial measures of visual clutter. These
measures should be able to operate on arbitrary images,
rather than requiring a list of the items in the display and
their properties (e.g., “green tree at location (5, 2.6)”). The
measures should behave sensibly on standard simple
psychophysical displays. Furthermore, they should corre-
late well with performance in search experiments, at least
when one (approximately) controls for target–distractor
discriminability and when such experiments have a
minimal top–down component to the visual search task.
None of the candidate clutter measures explicitly deal

with objects, but they will be a function of the number of
objects in the display, as well as of their appearance and
organization. Furthermore, the measures may be applied
to any static display because they take an image as input
and do not require a list of items in the display.

What is clutter?

Clutter is the state in which excess items, or their
representation or organization, lead to a degradation of
performance at some task. Excess and/or disorganized
display items can cause crowding (Stuart & Burian, 1962),
masking (Legge & Foley, 1980), decreased object recog-
nition performance due to occlusion, and impaired visual
search performance (see Wolfe, 1998, for a review). More
items can also stretch or exceed the limits of short-term
memory (Miller, 1994). In the case of short-term memory,
the relevant factor seems not to be merely the number of
objects, but their features (color, orientation, etc.); the

Figure 2. A portion of an information visualization: a map. What
counts as an “item” in a display like this?

Figure 3. RT versus set-size (or clutter) curves. Set size (clutter)
and target–distractor discriminability interact to predict perfor-
mance. Target–distractor discriminability select which curve
describes the RT data; for example, a difficult feature search
might put performance on the green curve. Set size (clutter)
selects location on this curve (circle or triangle), to predict RT.

Journal of Vision (2007) 7(2):17, 1–22 Rosenholtz, Li, & Nakano 3

describes search performance. Set size determines essen-
tially where a stimulus lies on a particular performance
curve; that is, it determines the x-value. Together, the two
(curve plus x-value) predict the performance, for example,
RT. Similarly, we would expect clutter to interact with
discriminability to predict search performance in complex
imagery.
Additional factors also influence search performance.

Of particular importance for the issues of clutter and set
size is the effect of top–down information on visual
search. When a cue indicates that the target will appear at
a subset of possible locations in a display, RTs are a
function of the relevant (cued) rather than the nominal set
size (Palmer, 1994; Palmer, Ames, & Lindsey, 1993).
Features of the target may also cue a subset of potential
items as possible targets, again effectively reducing set
size. Furthermore, researchers have shown that in complex
natural scenes, expertise such as prior knowledge about
regions likely to contain a target, such as a pedestrian, can
limit eye movements during search to those regions
(Torralba et al., 2006). In testing our measure of visual
clutter, we propose to initially minimize these top–down
effects by focusing on search for categorical targets in
situations that minimize prior knowledge about likely
target locations. (If one were trying to determine whether
set size is relevant for search performance, one would not
first perform experiments in which relevant set size is
unknown and differed from nominal set size.) Once we
have confidence in a measure of visual clutter, such a
measure can help us better evaluate experimental results

involving more complex stimuli and search tasks, includ-
ing those with significant top–down components.
Our goals for this article are to derive, implement, and

test several initial measures of visual clutter. These
measures should be able to operate on arbitrary images,
rather than requiring a list of the items in the display and
their properties (e.g., “green tree at location (5, 2.6)”). The
measures should behave sensibly on standard simple
psychophysical displays. Furthermore, they should corre-
late well with performance in search experiments, at least
when one (approximately) controls for target–distractor
discriminability and when such experiments have a
minimal top–down component to the visual search task.
None of the candidate clutter measures explicitly deal

with objects, but they will be a function of the number of
objects in the display, as well as of their appearance and
organization. Furthermore, the measures may be applied
to any static display because they take an image as input
and do not require a list of items in the display.

What is clutter?

Clutter is the state in which excess items, or their
representation or organization, lead to a degradation of
performance at some task. Excess and/or disorganized
display items can cause crowding (Stuart & Burian, 1962),
masking (Legge & Foley, 1980), decreased object recog-
nition performance due to occlusion, and impaired visual
search performance (see Wolfe, 1998, for a review). More
items can also stretch or exceed the limits of short-term
memory (Miller, 1994). In the case of short-term memory,
the relevant factor seems not to be merely the number of
objects, but their features (color, orientation, etc.); the

Figure 2. A portion of an information visualization: a map. What
counts as an “item” in a display like this?

Figure 3. RT versus set-size (or clutter) curves. Set size (clutter)
and target–distractor discriminability interact to predict perfor-
mance. Target–distractor discriminability select which curve
describes the RT data; for example, a difficult feature search
might put performance on the green curve. Set size (clutter)
selects location on this curve (circle or triangle), to predict RT.
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Q: How would you place an element?



Clutter as feature congestion
HVS has evolved to spot unusual items in scenes

Clutter is the state in which excess items, or their representation 
or organization, lead to a degradation of performance at some 
task. 
Excess and/or disorganized display items can cause 
• crowding (Stuart & Burian, 1962), 
• masking (Legge & Foley, 1980), 
• decreased object recognition performance due to occlusion
• impaired visual search performance (Wolfe, 1998)
• forgetting due to exceeding the limits of short-term memory (Miller, 

1994). 



The idea (Rosenholtz)

color, we extract a local mean color at each scale by pooling
with a Gaussian filter. For orientation, we compute oriented
opponent energy, a la Bergen and Landy (1991), which gives
usa two-vector, (k cos(2E), k sin(2E)), at each image location
and scale, where E is the local orientation and k is related to
the extent to which there is a single strong orientation at the
given scale and location.
Then, for each feature, we compute the local (co)

variance for each feature. This may be done efficiently,
and in a biologically plausible way, through a combina-
tion of linear filtering (to average over a local area) and
point-wise nonlinear operations (to compute the variance).
From a covariance matrix, it is straightforward to compute
the volume (area) of the covariance ellipsoid, our local
measure of color (orientation) feature congestion, that is,
clutter. The contrast feature congestion is simply the
square root of the contrast variance.

Combine across scales

For each feature, we combine feature congestion across
scale by taking the maximum at each pixel. We reason
that a feature is locally congested if it is congested at any
scale. Little has been done to examine the interaction of
multiple scales in determining target saliency or the
influence of clutter, and more basic research needs to be
done to have a better understanding of how information
combines across scale.

Combine across features

At this point, we have three clutter maps for the image,
representing the “color congestion,” “texture congestion,”
and “orientation congestion.”

Next, we combine color, contrast, and orientation
clutter at each point. We first take the cube root of
color clutter (a volume) and the square root of orientation
clutter (an area) to make these more comparable to
contrast energy clutter (a scalar). Even so, the three
clutter measures are not scaled equivalently. The true
measure of how congested a feature space is is how
much of feature space is taken up by the covariance
ellipsoid relative to how much feature space is available.
Therefore, it is appropriate to scale the clutter value in
each feature dimension by essentially the range of
possible clutter values for that feature. Currently, we
approximate that range by normalizing by the standard
deviation of clutter values for a given feature over a wide
range of input images. We then combine the scaled color,
contrast, and orientation clutter at each point by taking
their sum.
A final model of clutter will almost certainly involve a

more complicated combination rule than that used here.
The features might, for instance, be combined into a
single large feature vector prior to computation of the
covariance, as might be suggested by the search results
and modelling of Eckstein, Thomas, Palmer, and
Shimozaki (2000). Some features might have priority
over other features; for example, Callaghan (1989) has
suggested that color dominates over geometric form in
texture segregation. Much basic research needs to be
done to adequately model feature interaction. In the
absence of such research, our aim was to see how far we
could go with a simple measure. Early attempts to allow
a general linear combination of clutter across features
did not greatly improve performance of this clutter
measure.

Figure 5. (A) High luminance variability, low orientation variability, as indicated in Panel (B). (C) One easily notices an item with an unusual
orientation. (D) High variability in both luminance and orientation, as indicated in Panel (E). It would be difficult to draw attention to an item
in this display using only the features of luminance and orientation.
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If a feature vector is an outlier to the local distribution 
of feature vectors, then that feature is salient.



Feature Congestion model:
Computation
1. Compute local feature covariance per feature
• Luminance
• Color 
• Orientation
2. Combine across scale
• If congestion occurs at any scale à clutter
3. Combine across feature types
4. Pool over space to get a single measure of clutter for each 

input image



Empirical studies

Quickly, find scissors!

nominal set sizeVbut they argue that, because of the
difference between simple and multipart distractors, the
number of parts is a more relevant measure of search
difficulty.
We ran the three clutter measures on 960 of their

images. The results for the Feature Congestion measure
are shown in Figure 12; results for the other two measures
were quite similar qualitatively, except that within sparse
displays, there was no apparent difference between
complex and simple distractors. Cluttered displays are
significantly more cluttered than sparse displays. Images

with complex distractors are significantly more cluttered
than images with simple distractors, but there is no
significant difference between simple and complex targets.
Distractor type and display type interact, so there is a
bigger effect of distractor type in complex displays than in
sparse. Bravo and Farid (2004) find no significant differ-
ence of distractor type in simple displays, as found by
Subband Entropy and Edge Density. But this difference
from the predictions of the Feature Congestion measure
could be due to added noise in the empirical data leading
to a lack of significance, as they do show a consistent
difference in their target absent trials. There is a
significant effect of nominal set size, and this interacts
with distractor type, so clutter versus set-size slopes are
larger for complex than for simple distractors. Further-
more, clutter versus set-size slopes are larger in cluttered
than in sparse display arrangements. There is strong
agreement between these clutter results and the results of
Bravo and Farid (2004), suggesting that our measures of
clutter are predictive of many of their results. In some
sense, this is disappointing because it does not allow us to
distinguish between these measures of clutter. On the
other hand, in a sense, it is an indication of the utility of a
measure of clutter for understanding the results of search
in complex displays. If any of our measures of clutter can
predict the Bravo and Farid results, this suggests that the
difference in performance between, say, simple and
complex distractors may be due to a difference in clutter
of the displays, measured in any of a number of ways, and
not necessarily to a difference in the number of parts,
which Bravo and Farid essentially give as their measure of
clutter.

Experiment 3: Does color variability matter?

All three measures of visual clutter correlate well with
the data from our Experiment 1 and with previous search
experiments. A big difference between the three meas-
ures is in their handling of feature variability and, in
particular, color variability. Experiments and modeling
of visual search suggest that increased feature variability
impairs search performance (Duncan & Humphreys, 1989;
Rosenholtz, 1999, 2001b). Furthermore, Oliva et al. (2004)
report an association between color variability and com-
plexity judgments. These observations are often echoed in
design guidelines. For example, the Windows MSDN
Visual Design Guidelines (http://msdn2.microsoft.com/
en-us/library/ms997613.aspx) warn against the use of too
many colors in a user interface because this will add visual
clutter.
The Feature Congestion clutter measure explicitly

captures variability of color and other features. The
Subband Entropy measure captures this more implicitly
by looking essentially at the amount of high frequencies in
the color bands, and the Edge Density measure ignores

Figure 11. (A) Sparse arrangement and (B) cluttered arrangement,
from Bravo and Farid (2004). In addition, Panel (A) shows simple
objects, whereas Panel (B) shows complex (multipart) objects.
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Typical tasks
choice provided several advantages. First, we could, in
principle, have had a more natural task in which
observers search for targets already existing in the maps.
But first, symbols already present in a map can hardly be
expected to appear all at the same eccentricity, thus
adding another source of variance to the data. Further-
more, searching for symbols already present in the maps
would have been a more difficult experiment to set up
because all the maps contain different symbols, and we
would need to both determine which symbols appeared
in which maps and inform the observer of a different
target on each trial. We wanted observers to search for a
variety of targets, not already present in the maps, over
which we had a fair degree of control over their
appearance, while keeping instructions to observers
simple by having them search for a categorical target.
We chose targets consisting of 16 grayscale Gabors.
(Earlier pilot experiments had observers search for a
bull’s-eye target, which one might think of as a “you are
here” symbol, and the results in terms of correlation with
various measures of visual clutter were virtually identi-
cal to those presented here.) The wavelength of the
carrier sine wave was always twice the standard
deviation of the envelope. The Gabors varied in scale
(envelope A = 0.55- or 0.83-), orientation (45-, 90-,
135-, or 180-), and phase (sine or cosine). Before the
experiment, observers were shown a number of examples
of Gabors, and each observer received a training block
with feedback to ensure that he or she understood the
task and nature of the targets. Each target appeared
exactly once in each of the six general locations of the
image. The exact location of the target was determined
by the superposition of one of six locations in the image
and a small random position jitter of up to 0.75- in both x
and y directions. The prejitter target locations were
isoeccentric at approximately 7.6- from the initial
fixation.
Nineteen colored map images served as the background

against which the targets were superimposed. The targets
were added as a semitransparent layer on top of the maps.
The map images were found using a random search for
maps on the Web to test the three candidate clutter
measures on typical maps. The maps were chosen so that
8 were at the scale of showing an entire country, 3 were at
the scale that showed several cities, 4 showed a large
portion of a city, and 3 showed only a few streets. Again,
this was done to get a sampling of typical existing maps.
The maps were cropped to be uniform in size, to avoid
effects in which search might take longer simply because
there was more area to search, and spanned about 24- of
visual angle when viewed during the experiment from
15 in. The maps were corrected to have a mean luminance
of mid-level gray and to have approximately the same
mean color (also a mid-level gray) for all. In principle, this
was done to minimize a possible source of variance in
which search in one map might be easier or harder merely
because the map was darker or closer to the target (gray)

color than another image. In practice, a pilot experiment
suggests that this manipulation had virtually no effect on
the fits of the clutter measures to the experimental data.
The mean luminance of the Gabor target was always set to
the local mean luminance of the map, again to minimally
control for local contrast of the target, which might affect
search performance. Figure 6 gives an example of a map
with superimposed Gabor target.

Methods

Each observer was seated in front of a computer display.
Observers were instructed to search for a Gabor target
against each background image and to respond as quickly
and accurately as possible as to whether a target was
present or absent. The image was displayed until subjects
indicated their response by pressing “f” for target absent or
“j” for target present. After each trial, visual feedback was
given to indicate whether the response was correct. After
the feedback, a fixation-cross appeared in the center of the
display for 500 ms before the next trial began. A total of
3,648 trials (16 targets ! 19 images ! 6 locations ! target
absent/present) were divided evenly among 12 blocks. We
ran our experiments in MATLAB, using the Psychophysics
Toolbox (Brainard, 1997; Pelli, 1997).
Six subjects participated in Experiment 1. All observers

had normal or corrected-to-normal vision and were
compensated for their time.

Figure 6. Example of background image with superimposed
Gabor target.
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of these correlation coefficients differ significantly from
each other (p 9 .05).

Experiment 2: Contrast thresholds for visual
search in maps

In this experiment, we compare the outputs of the three
clutter measures to a more traditional psychophysical
measure of performance: contrast thresholds necessary for
a given level of performance at a visual search task. In
this, as in later experiments, unless otherwise specified,
the methods and stimuli are as in Experiment 1.

Stimuli

Observers searched for an arrow symbol in a number of
geographic maps. The arrows were dark against a light
rectangular background, so that their average color was
mid-level gray. Each arrow pointed either to the left or to
the right. Arrows were approximately 1.2- in length.
Figure 8 shows an example of an arrow in a map.
Twenty colored map images served as the background

images against which the targets were superimposed.
Fifteen of these maps were the same as in Experiment 1.
Four of those maps were removed from this experiment
because they already contained arrows, and 5 maps of
approximately the same clutter were added in their place.
The arrows were again added transparently to the

background images; this meant that at 0 contrast, the
arrows were invisible.

Methods

An arrow appeared in each display at one of six possible
target locations. Target locations were all at the same 7.6-
of eccentricity. Search displays appeared for 1 s, followed
by a random noise mask. Observers indicated via a key
press (“d” or “k”) whether the arrow pointed to the left or
to the right, respectively. Target contrast was varied by a
Robbins and Monro (1951) stochastic approximation
staircase (see Treutwein, 1995, for a review), to arrive at
a 75% correct threshold. We approximate target contrast
as (Lmax j Lmin)/Lmean, where Lmean is taken over a local
neighborhood of the target. It is unclear what the best
measure of target contrast is for a target placed in a
complex and nonstationary environment. However, by the
above measure of contrast, thresholds were relatively
consistent from location to location within a given image.
A different staircase was used for each target location in
each image.
Four experienced psychophysical subjects participated

in the experiment, including two of the authors. All
observers had normal or corrected-to-normal vision.

Results

Contrast thresholds were fairly similar from location to
location within an image, so we average thresholds within
an image. Figure 9 shows the mean threshold target
contrast for each image, averaged over target location and
subject. Figure 9A shows the mean threshold target
contrast versus the Feature Congestion clutter measure.
Figure 9B shows the results for the Subband Entropy
measure. Figure 9C shows the results for the Edge Density
measure. Again, mean contrast threshold is significantly
correlated with all clutter measures (p G .001): Feature
Congestion, r = .93; Subband Entropy, r = .68; and Edge
Density, r = .83. The Feature Congestion measure is
significantly better than Subband Entropy (p G .05), but
Edge Density is not significantly different from either
Feature Congestion or Subband Entropy.

Performance of the Feature Congestion
measure of visual clutter on standard
simple visual search displays

If clutter is to act as a stand-in for set size, ideally, it
should do something sensible for simple psychophysical
displays. In particular, we would like a clutter measure to
monotonically increase with nominal set size. We ran the
three clutter measures on feature search displays (red disk
target among green disks), T versus L, and conjunction

Figure 8. Example of map image with superimposed arrow target
(center left).
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Find the Gabor patch (gray “\”)

Find the arrow (pointing left)



Results

search for a red horizontal bar among green horizontal and
red vertical. Set sizes were 4, 8, 12, and 18.
In general, not surprisingly, all three measures of visual

clutter monotonically increased with set size. Compar-
isons between types of search are trickier. The Edge
Density measure, in particular, is quite sensitive to item
size, making comparisons across search types uninforma-
tive. For both Subband Entropy and Feature Congestion,
feature search displays appear more cluttered than
conjunction search, which appears more cluttered than
the search for a T among Ls. Conjunction search is
probably less cluttered than feature search for these

examples because the red items in our conjunction search
examples were actually much more similar to the back-
ground than the green items were and thus provided less
clutter than the green items did. The ordering of clutter
between feature and T versus L search makes some sense
if we think of clutter as a more complicated stand-in for
set size. Search performance is a matter of target–
distractor discriminability and clutter or set size. The T
versus L search is arguably difficult precisely because low
target–distractor discriminability means that the display
looks like a uniform (low clutter) texture. Target–
distractor discriminability is high in a red among green

Figure 9. Mean threshold target contrast (threshold) versus clutter measures, plotted with 95% confidence intervals. (A) Threshold versus
Feature Congestion clutter, (B) threshold versus Subband Entropy clutter, and (C) threshold versus Edge Density clutter.
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Summary

Clutter as feature congestion
• “Clutter is a state where nothing can be added that could be 

salient”
Competition occurs within a cue type (color, luminance, 
orientation)



Summary
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interfacemetrics.aalto.fi

EXERCISE 1.A
1. FIND A UI YOU THINK HAS A 
POOR VISUAL FLOW.
2. RUN “UMSI” ON IT.
3. IMPROVE IT
4. REPORT THE ORIGINAL AND 
THE REVISED DESIGN

https://shorturl.at/QjXyG



Motor control
4.6.2024
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1. Motivation
2. HFE
3. Perception
4. Motor control
5. Pairwork topics



Motor responses: The atoms of 
interaction
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1 Motor Control

Figure 1.1: In pointing, the goal is to move the end-effector (here: tip of thumb) to
contact a spatially extended target with appropriate force. Image source:
pxhere.com

Aimed movements are perhaps the most common and elementary type of action in
computer use. To elicit the right command, we need to move the body in the right way
and at the right time. For example, to send character ’a’, a sufficiently small body part
must land exactly on the cap of the button with sufficient (but not excess) force. With
the exception of brain computer interfaces, most UIs are operated by aimed movements.
Two fundamental types of movement constraints can be distinguished.

• Spatially constrained aimed movements are restricted at the end or during the
movement to a specified region or point. Discrete aimed movements are movements
to spatially bounded targets.
An example is moving a mouse cursor on top of a button to select it. This movement
type is prevalent in HCI, it is in fact one of the prime paradigms used to communicate
intentions and commands to a computer. Consider for example buttons, widgets,
links, icons and so on. Continuous aimed movements, in contrast, require keeping
the control point within a bounding box during the whole duration of the movement.
For example, driving a car requires continuously steering it so as to keep it on the
lane. We discuss steering and gesturing in the two next sections.

• Temporally constrained aimed movements must hit a target defined in time. The
target can be hit during a specific interval, or the goal is to be as close to the target
as possible. An example of the latter is playing notes on a piano, and and example
of the former jumping over obstacles in a video game. Often these two types of
constraints occur together.
In an interception task, we need to catch a moving object by (1) placing a selector on
its future path and (2) pressing the button when the object is within the selector’s
effective region. Consider for example hitting a tennis ball served by the opponent
or sniping an enemy player in a first person shooter game.

6



A few orienting questions
1. Why are smaller targets harder to select?
2. Why do I fail in Level 20 or Flappy bird?
3. What is the probability of hitting into a car ahead of you if 

that car brakes?
4. Is the Qwerty layout optimal for German language?
5. What is the fastest possible time for an eSports player to 

shoot an enemy?
6. What is the fastest possible typing speed on an iPhone?
7. Why are gamers using joysticks worse than those using 

mouse+keyboard?
8. Why is it harder to draw a circle with a mouse than with a 

finger tip? 4.6.2024
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Research on human motor control

Models of motor 
performance 
capture essential 
aspects of human 
performance in a 
statistically rigorous 
way



Example: Fitts’ law
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Models of motor performance
What: Link performance-related variables to design-related and 
task-related variables
Why: Accurate and practical models to inform design and 
engineering

Statistical methods used for
• Model construction
• Model fitting
• Model validation
• Model selection

4.6.2024
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Learning objectives in this lecture

1. Motor response 
models

Motor performance in 
discrete input tasks, 
including aiming and 

choice

2. Task performance 
models

Decomposition of task 
performance into 

elementary motor-
cognitive actions

KLMFitts’ law Hick-Hyman law



Introduction
Motor performance
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Overview of motor responses

Choice reaction

Simple reaction

Pointing



What is it?
A motor response is motor action taken by a user 

• The user intends to select a particular (intended) option within a 
set of options offered at the moment

• This intention is communicated by moving an end-effector (e.g., 
finger tip, mouse cursor)

• To select a particular option (target), the end-effector must be 
brought within the spatio-temporal constraints that demarcate 
that target

In the beginning of a motor response
• The end-effector is in some state (initial position and velocity)
• The intended target is in some ego-centric relationship to the 

end-effector
A motor response consists of the trajectory of motion, and 
total response time, and the accuracy of the end point
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Q: Why is this NOT a response?
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Types of motor responses 1/2
1. Pointing

• Moving an end-effector across distance to a spatially defined target
• Spatial demands posed to this response

• width of target
• distance to target

• Performance objective
• Do this ‘as quickly and accurately as possible’

2. Choice reaction
• Select a target by pressing the button that is the intended target
• Choice demand

• selecting the right option among many

• No spatial demand
• No need to move end-effectors, as fingers are already on the buttons

• Performance objective
• ‘as quickly and accurately as possible’

4.6.2024
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Illustrating spatial demands
(changing target distance and size)
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Buttons on a patient monitor



Playing subway Surf



Types of motor responses 2/2
3. Temporal pointing

• Selecting a temporally moving target 
• Temporal demands posed to this response

• width of target (in time)
• distance to target (in time)

• Performance objective
• Do this ‘as accurately as possible’

4. Interception
• Select a moving target by moving an end-effector on top of it
• The size and movement of the target object defines the spatial and 

temporal demands
• Performance objective: ‘quickly and accurately’
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Temporal demands

4.6.2024
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Interception

A spatially and temporally bound target
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Empirical factors affecting 
performance in interception tasks
No. of response options
No. and type of distractors
Visibility of target
Preview time
Input device
Feedback

4.6.2024
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Example: Microsoft Word

4.6.2024
155



Q: Which response type?
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Why is this topic important?

Basic capabilities and limitations of humans in interaction

The “atoms of interaction”: Motor responses underpin almost all 
human-technology interaction

Models allow you to find optimal tradeoffs among design 
decisions

You can exploit them computationally in the generation, 
refinement, and adaptation of user interfaces

4.6.2024
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Analyzing a motor response
1. Response set

• What are the available actions? 
- List all the options that user has in this state

2. Response type
• Identify the type of motor response in question
- Pointing, choice, or both?

3. Performance objective
• Is the user trying to be fast or accurate or both?

4. Initial state
• What is the initial state of the end-effect0r?

5. Response demands
• Characterize the spatial and temporal demands of the 

intended target in relationship to the initial state 4.6.2024
159



We need such analysis to translate 
everyday motor responses for 
modeling...
Emergency braking: Push the right pedal immediately

Calling an elevator: Hit the right button and get it activated; no 
hurry

Choosing an item to buy in Amazon: Select the correct one item, 
but there’s no hurry

…
4.6.2024
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Example: Braking

1. The response set?
2. The response type?
3. Performance objective?
4. Initial state?
5. Response demands?

4.6.2024
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Learning objectives for motor response 
models
Recognize the right response type in a given setting

Know the two basic models (Fitts’ law and Hick’s law) and 
understand their scope: when they can/cannot be applied

Use models to compare and enhance designs

Analyze trade-offs in design by applying a model



Application 
examples
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Applications: Improve layouts
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Pareto Optimized Arabic Mobile 
Keyboard Layout

 
 

Abstract 
This paper presents a new design of an Arabic keyboard 
layout for effective text entry on touch screen mobile 
phones. Our approach is based on Pareto front 
optimization using three metrics: minimizing finger 
travel distance in order to maximize speed, minimizing 
neighboring key error ambiguities in order to maximize 
the quality of spell correction, and maximizing 
familiarity for less technologically literature users 
through approximate alphabetic sorting. In our short 
user studies, the new layout showed an observed 
improvement in typing speed in comparison to a 
common Arabic layout. We believe the opportunity is 
now ripe to research new optimized keyboard designs 
where there is less usage experience than Qwerty has 
in mainstream Western European languages. Pareto 
optimisation can produce high quality keyboards for 
alphabet based laguages that could give real benefits 
where there is less reluctance to change from Qwerty. 
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Figure 1. Pareto optimized Arabic 
keyboard layout  
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The new Azerty standard in France was 
optimized using motor response 
models
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Design game levels: 
Control the level of difficulty 
Example: Increasing temporal pointing demand to control the 
probability of game character dying
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Motor Response 
Models
From simple reaction to aimed 
movement

4.6.2024
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Goals today: 
1. Fitts’ law
2. Hick-Hyman law



Overview

Choice reaction

Simple reaction

Pointing



Overview

The mathematical formula will be given in Assignments, we here 
focus on the main concepts

Heads up:
These models contain empirical parameters (coefficients) that 
are task- and user-specific
• Empirically obtained or inferred from data

• Example: Using OLS (Ordinary Least Squares) to fit the two 
parameters of Fitts’ law

4.6.2024
170



Simple reaction
4.6.2024
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Reaction times
Simple reaction time 

Time taken to respond to a stimulus 
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Reaction times “in the wild”

4.6.2024
173

Simple Reaction Time 

Over 22 million responses 
Mean: 268 ms 

humanbenchmark.com 

ELEC-E7851 Fall 2016 - 11 



Case: Braking
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Ratcliff model

4.6.2024
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Reaction process [Ratcliff and Van Dongen 2011] 

Perception 
and 
Encoding 

ELEC-E7851 Fall 2016 - 13 



Ratcliff model

4.6.2024
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Reaction process [Ratcliff and Van Dongen 2011] 

Collecting  
Evidence 
 

ELEC-E7851 Fall 2016 - 14 



Ratcliff model

4.6.2024
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Reaction process [Ratcliff and Van Dongen 2011] 

Motor response 

ELEC-E7851 Fall 2016 - 15 



Choice reaction
A generalization of simple reaction (number of options N=1) to the case of N>1

4.6.2024
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Examples of choice reactionCHOICE Reaction Time 
Time taken to respond to a 
stimulus appropriately 

ELEC-E7851 Fall 2016 - 17 



Hick’s experiment

4.6.2024
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Hick’s Experiment 

[Seow 2005] 

1952 

ELEC-E7851 Fall 2016 - 18 



CRT as a function of number of options

4.6.2024
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Hick’s Experiment 

Reaction time increases logarithmically with  
the number of choices 
 

[Seow 2005] 

RT = a+ b log2(n)

ELEC-E7851 Fall 2016 - 19 

CRT  = choice 
reaction time



Comparing two users / devices
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Information-theoretical interpretation

4.6.2024
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Hick-Hyman Law 
[Hick 1952, Hyman 1953] 

Reaction time increases with the amount of information 

All choices have equal probability: 

 

Choices have different probabilites: 

!"=#+ $∙% 

 

 

Practice 

Number of equally probable choices 

R
ea

ct
io

n 
Ti

m
e 

(s
) 

RT = a+ b log2(n)

H = − pi log2 pi
i=1

n

∑
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Example: Game
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Aimed movements: 
Fitts’ law

4.6.2024
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Aimed  
Movements 

Image sources: tipandtrick.net, cnet.com, hackett3d.com, flickr.com 
ELEC-E7851 Fall 2016 - 25 



Response demands in pointing

D
W

Origin

“Select the target as quickly as you can”
Target



Reciprocal pointing experiment

4.6.2024
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D

WW



190

Distance (D)

Width (W)

Fitts’ law

Fitts’ law: Idea

MT = a+ b ID = a+ b log2(D/W + 1)

Index of Difficulty



Q: Draw “the Fitts’ diagram”

4.6.2024
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X-axis: ”Index of difficulty”
Y-axis: Movevement time



Fitts’ law is one of the most robust 
motor response models

4.6.2024
192Chapuis et al. 2009



Demonstration
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Comparing input devices with Fitts’ law
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Example: 
Game

4.6.2024
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EXERCISE 1.B
1. PICK A UI THAT IS USED A LOT
2. RUN FITTS’ LAW ON IT FOR 2-3 
MAIN TASKS
3. IMPROVE THE DESIGN
4. REPORT THE ORIGINAL AND 
THE REVISED DESIGN

https://shorturl.at/QjXyG



Temporal Pointing 
Model
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Empirical task: Blinking target
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Temporal pointing task

“Press the button when the target appears under selection area”
Model applies when time to target is larger than 600 ms (some 
anticipation needed)

4.6.2024
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Temporal pointing model

4.6.2024
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Formula for predicting error rate

4.6.2024
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Illustrated
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Example application: Flappy bird

4.6.2024
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Keystroke Level 
Modeling

4.6.2024
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Point-and-click interfaces

4.6.2024
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Keystroke-level model
A model of task completion time in sequentially performed tasks 
consisting of simple actions. A memoryless model

Input: Operation sequence, UI elements and layout
Output: 
Task completion time  =

 tK [key stroking]
+ tP [pointing]
+ tH [homing]
+ tD [drawing]
+ tM [mental operation]
+ tR [system response]



KLM, a task-level predictive model
Pros
• Predicts total task completion time (TCT) for UIs operated by discrete 

commands
• Some GUIs, web pages, forms, widgets, dialogues, panels, toolbars etc

• Informs design and evaluation
Cons
• A strictly sequential model; no multitasking
• Memory-less
• Focus is on task performance, other aspects of behavior and 

experience are ignored
- Lacks a notion of “semantics” and “contexts”
- Overlooks individual and cultural differences
- Only rough notion of learning (i.e., parameters can be updated)

• Validity depends on task specifications and model assumptions



Task: ”Search all instances of the 
word ’Company’ and replace them

with the word ’Firm’”



Keystroke-level model (KLM)

Task completion time =

tK [key stroking]

+ tP [pointing]

+ tH [homing]

+ tD [drawing]

+ tM [mental operation]

+ tR [system response]

Expert typist (90 wpm): .12 sec
Average skilled typist (55 wpm): .20 sec
Average nonsecretarial typist (40 wpm): .28 sec
Worst typist (unfamiliar with keyboard): 1.2 sec

Fitts’ law

Time it takes to move hand from one input 
device to another. Typically constant, e.g. 0.4s

Estimated by the researcher or looked up from a 
lookup table

Observed response time



Example: replacing a word

4.6.2024
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Reach for mouse H[mouse] 0.40 

Move pointer to "Replace" button P[menu item] 1.10 

Click on "Replace" command K[mouse] 0.20 

Home on keyboard H[keyboard] 0.40 

Specify word to be replaced M[word] 2.15 

Reach for mouse H[mouse] 0.40 

Point to correct field P[field] 1.10 

Click on field K[mouse] 0.20 

Home on keyboard H[keyboard] 0.40 

Type new word M[word] 2.15 

Reach for mouse H[mouse] 0.40 

Move pointer on Replace-all P[replace-all] 1.10 

Click on field K[mouse] 0.20 

Total 10.2 



EXERCISE 1.C

Task: Do a KLM model for one user task on your 
page (e.g., ”Type ‘Aalto’ and press ‘Google 
Search’)

Paste your model to the doc

https://shorturl.at/QjXyG



http://mattbors.tumblr.com/post/100671142990/the-ultimatum-game-more-comics-at-the-nib



Limitations of KLM 1/2
KLM is highly case-sensitive
• KLM operator values are obtained empirically by carrying out 

tasks representative users and devices
• When these conditions change, estimates change, too

KLM ignores variability in human performance
• Within-individual and between-individual differences are large

KLM is memory-less
• Prior states do not affect operator values

4.6.2024
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Limitations of KLM 2/2

KLM applies to “script-like” task performance
• “Do this, then that, then that, …”

KLM has no model of perception nor cognition
- No perception, choice, decision-making…

KLM is limited to point and click style interfaces
• Selection & data entry mostly; Forms, settings, panels, menus etc



Simple error analysis with KLM

We assume that an error occurs with probability of p

With error, TCTaverage becomes
 
 TCTaverage = (1 – p) * TCTno error + p * TCTerror occurred 

Instructions:
• Identify the most costly and probable error
• Estimate p
• Do a separate model for that (what happens when the error occurs?)
• You can now compute TCTaverage



Many common causes of errors are 
ignored in KLM
Motor execution variability
Misperception of display and change blindness
Level of skill (e.g., novices vs. experts)
Wrong or partial beliefs about the system
Spatial memory and inference (getting lost)
Cognitive load
Multitasking
Decision-making fallacies
Idiosyncratic differences (e.g., age groups)

4.6.2024
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Summary: KLM

Predicts skilled user’s performance in sequentially operated 
tasks

Sum up time spent in six elementary operations

Parameter values are terminal and user specific

A handy “back of the envelope” tool for first estimates!

4.6.2024
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Pairwork topics



Example student project: HSL card 
reader redesign case 2017
[PDF]

4.6.2024
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Topics and task

Topics
Public services in the web
Online banking
Ticketing apps
Aalto MyCourses
Aalto SISU
A news page

Task
• Select a concrete case
• Define your baseline

• Select 1-2 UIs 
• Select 2-3 user tasks

• Analyze the baseline
• Iteratively improve it
• Analyze at least 1 (winner)
• Report (next slide)

4.6.2024
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Fitts’ law
Saliency
KLM



Methods and deliverable 

Methods
Analysis methods
• Fitts’ law
• Saliency models
• KLM
Iterative prototyping (paper, 
Figma, Powerpoint, …)

Deliverable: Presentation
• 5 slides

• Current design (baseline)
• Design goals
• Alternative designs 
• Winning design + analysis
• Comparison to baseline

• 7 mins +Q/A

4.6.2024
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Scoring

Objectives
- Improvement % in MT
- Improvement in flow 
- Improvement % in TCT

Constraints
• Improvements should not 

massively negatively affect the 
rest of the UI

4.6.2024
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