

Laboratory course in Biosystems and Biomaterials Part I – Enzyme kinetics.

September 29th, 2023

Organizers and instructors:

Laura Niemelä (Molecular Biotechnology)

Rahul Mangayil (Biomolecular Materials)

Department of Bioproducts and Biosystems | Aalto University

Table of Contents

CHEM-E8110: Day 1 - Acid phosphatase assay	3
Introduction	೨
Materials	3
Procedure	4

CHEM-E8110: Day 1 - Acid phosphatase assay

Introduction

Saccharomyces cerevisiae produces acid phosphatase endogenously. As the produced phosphatase catalyzes dephosphorylation reactions the presence of the acid phosphatase can be tested/ quantified with a colorimetric assay based on the dephosphorylation reaction of para-nitrophenyl phosphate (pNPP) to para-nitrophenol (pNP) (figure 1).

Figure 1. Acid phosphatase catalyzes the dephosphorylation of pNPP to pNP which produces a color reaction that can be quantified by reading the absorbance at the wavelength of 405 nm.

<u>Learning outcomes</u>: During this exercise you will learn basic pipetting skills and how to conduct a simple assay.

<u>Aim</u>: The aim of this assay is to quantify the produced acid phosphatase from the yeast strain that overexpresses the enzyme.

Materials

- Yeast culture samples (two students share one tube)
- Substrate (20 mM pNPP in buffer)
- Standard solution tube Nr.1 (50 mM pNP in buffer)
- 100 mM Na-acetate buffer pH 4.2 (for creating the dilution series of the standard)
- Stop solution (2M Na₂CO₃)
- Blank (culture media)
- Eppendorf tubes

Procedure

In a nutshell:

- Task 1. Create a dilution series for the standard curve (in Eppendorf tubes).
- Task 2. Pipette the samples and blank in Eppendorf tubes for the assay.
- Task 3. Conduct the assay: Add the substrate into the Eppendorf tubes containing the sample and blank and incubate the tubes at 30°C. Quench the reactions with the stop solution.
- Task 4. Both the standard, sample and control reactions are transferred to 96 well plate for absorbance reading (done by teaching assistant)

Procedure in detail

- 1. Create a 1:2 dilution series of the pNP -standard solution (50 mM).
 - a. Create seven dilutions and the number (8) of the dilution series contains only Na-acetate buffer.

- 2. Pipette $60 \,\mu l$ of sample in Eppendorf tubes which you mark as $10 \,min$, $20 \,min$ and $30 \,min$ samples. Pipette $60 \,\mu l$ of media as blank in one tube.
- 3. Add 300 µl of 20 mM substrate in timed intervals (e.g. 10s) to the sample and blank tubes.
- 4. Incubate the tubes at 30°C (thermoblock). The reaction is stopped at timed intervals (10 min, 20 min, 30 min) with 600 μ l stop solution (2M Na₂CO₃).
- 5. Now the dilution series of the standard you created, the samples and controls are pipetted in a 96 well plate (Done by assistant).
- 6. The absorbance of the color reaction can be read with a plate reader at a wavelength of 405 nm. (Done by teaching assistant)

Questions

- Prepare a standard curve from the data. What needs to be plotted?
- What is the pNPP turnover catalyzed by the yeast produced acid phosphatase?

- Calculate the turnover rate (substrate converted / time unit) of pNPP to pNP with the help of the standard curve.
 - a. Report your answers in MyCourses.

	1	2	3	4	5	6	7	8	9	10	11	12	
Α													Α
В													В
С													С
D													D
E													E
F													F
G													G
Н													Н