Software Quality —NuiY
Assurance and e
lesting

pa.
::::

Prof Casper Lasseriigii

What is Software Quality?

Sottware Quality

- Quality, simplistically, means that a product
should meet its specification.

. This is problematical for software systems

There is a tension between customer
quality requirements (efficiency,
reliability, etc.) and developer quality
requirements (maintainability, reusability,
etc.):

- Some quality requirements are difficult to
specify in an unampiguous way;

. Software specifications are usually
incomplete and often inconsistent.

]

tware Qua

o0

ion

t

ITiCa

Ver

N

O

3 .
O 1 c O
o L me
= Q2
ﬁ_w/ SmS
3 D O ¢ +2
o O c O 5
O O O 9
= C = O &
Or S
Se OO
S_| + @)
O O E O
O 2 L 0 5

- -
O ‘= Qoe
= O O =
O dpnlu
£S5 |25%
%mu — O m

E o

Product Quality

[SO 25010 Product
Quality
Characteristics

- Nine main quality characteristics, each divided
iNto sub-characteristics

 Uses
- Eliciting and defining requirements
- Validating the requirements definition
. |dentifying design and testing objectives

- |dentitying quality control and acceptance
criteria

. Establishing quality measures

Functional suitability

Functional completeness

Functional correctness

Functional appropriateness

Performance efficiency

Time behaviour

Resource utilization

Capacity

Compatibility

Co-existence

Interoperability

Interaction capability

Appropriateness recognizability

Learnability

Operability

User error protection

User engagement

Inclusivity

User assistance

Self-descriptiveness

Reliability

Faultlessness

Availability

Fault tolerance

Recoverability

Security

Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Resistance

Maintainability

Modularity

Reusability

Analysability

Modifiability

Testability

Flexibility

Adaptability

Scalability

Installability

Replaceability

Safety

Operational constraint

Risk identification

Fail safe

I_I—I—I_I_I—I_I_I_I—I_II_I—I_I_I_I_I_I—FI_I——I_I_I—I"I_I_

Hazard warning

Safe integration

User needs Primary user Secondary users Indirect user
Content provider Maintainer
Interacting Interacting Maintaining or Using output
porting

Reliability How reliable does How reliable does How reliable does How reliable does
the system need to |updating the system |maintaining or port- |the output from the
be when the user with new content ing the system need |system need to be?
uses it to perform need to be? to be?
their task?

Security How secure does the |How secure does How secure does the |How secure does
system need to be the system need to |[system need to be the output from the
when the user uses |[be after the content |after maintenance |system need to be?
it to perform their |provider updates it? |changes are made or
task? when it is ported?

Learnability To what extent does |To what extent does |To what extent does |To what extent does

learning to use the
system need to be ef-
fective, efficient, risk
free and satisfying?

learning to provide
content need to be

effective, efficient,

risk free and satis-

fying?

learning to maintain
or port the system
need to be effective,
efficient, risk free
and satisfying?

learning to use the
output from the
system need to be ef-
fective, efficient, risk
free and satisfying?

Inclusivity and user
assistance

To what extent does
the system need to
be effective, efficient,
risk free and satisfy-

ing to use for people
with disabilities?

To what extent does
providing content for
the system need to
be effective, efficient,
risk free and satisfy-
ing for people with
disabilities?

To what extent does
maintaining or port-
ing the system need
to be effective, effi-
cient, risk free and
satisfying for people
with disabilities?

To what extent does
using the output of
the system need to
be effective, efficient,
risk free and satisfy-
ing for people with
disabilities?

Stakenholder Viewpoints

All stakeholders have different viewpoints
Customer

User

Programmer

Project manager
Tester

Note: even a bug-free product can be
unacceptable to the user

User scenarios (use-cases) should be validated
Requirements should be validated

Usability needs to be considered

Documentation should be tested

Customer feedback process needs to be working

Quallity contlicts

. |t is not possible for any system to be
optimized for all of these attributes - for
example, improving robustness may lead to

loss of performance.

- The quality plan should the

most important quality attri

software that is being deve

refore define the
butes for the

oped.

- The plan should also include a definition of
the quality assessment process, an agreed
way of assessing whether some quality, suc
as maintainability or robustness, is present |

the product.

Process and product quality

- The quality of a developed product is influenced
by the quality of the production process.

- This is important in software development as some
oroduct quality attributes are hard to assess.

- However, there is a very complex and poorly
understood relationship between software
orocesses and product quality.

- The application of individual skills and
experience is particularly important in software
development;

- External factors such as the novelty of an
application or the need for an accelerated
development schedule may impair product
quality.

BUSINESS PROCESS

“Nsuring software Quality

- Understand what quality means in
your context

. Build quality in using appropriate
‘0OCEesses
- Quality assurance

* [esting
* Reviews / Inspections

[nspections and testing

Y

Requirements Software UML design Database

specification architecture models schemas
System ‘
prototype |

Reviews and Inspections

- A group examines part or all of a process or
system and its documentation to find potential
oroblems.

. Software or documents may be 'signed off' at a
review which signifies that progress to the next

development stage has been approved by
management.

- There are different types of review with different
objectives

. Inspections for defect removal (product);

.« Reviews for progress assessment (product and
Orocess):

- Quality reviews (product and standards).

Quallty reviews

- A group of people carefully examine part
or all
of a software system and its associated
documentation.

%_\)/

- Code, designs, specifications, test plans,
standards, etc. can all be reviewed.

. Software or documents may be 'signead
off' at a review which signifies that
orogress to the next development stage
Nas been approved by

Mmanagement.

[nspections and testing

Inspections and testi

ng are complementary

and not opposing verification techniques.

-Both should be used
OroCess.

during the V & V

I[nspections can check conformance with @
specification but not conformance with the

customer’s real requirements.

[nspections cannot ¢

neck non-functional

characteristics such as performance,

usability, etc.

GIanning)—»

ndividual
reparation

)

Group
preparati

<|
)

Pre-review activities

Rev1ew
meetln

‘ne software review Process

Error
correction

Follow-up
checks
anrovem@—»

Post-review activities

Reviews and agile methods

The review process in agile software

development is usually

. |In Scrum, for examp
meeting after each |

informal.
e thereis a review

teration of the software

has been completed
quality issues and pr

(a sprint review), where
oblems may be discussed.

INn extreme programming, pair programming
ensures that code is constantly being examined

and reviewed by anoth

« XP relies on individuals

improve and refactor ¢

er team member.

taking the initiative to
ode. Agile approaches are

not usually standards-driven, so issues of

standards compliance
considered.

are not usually

“rogram 1Nspections

- These are peer reviews where engineers
examine the source of a system with the aim

of discovering anomalies and defects. - ? - wtodalﬂ-f:ﬂ'm
| | | - w3l _ofisted
- Inspections do not require execution of a
;ystem SO mqy be used before s MUOPMI,
implementation. e | 22 :
v

- They may be applied to any representation of
the system (requirements,
design,configuration data, test data, etc.).

- They have been shown to be an effective
technique for discovering program errors.

Advantages ol Inspections

- During testing, errors can mask (hide) other
errors. Because inspection Is a static process,
you don't have to be concerned with
interactions between errors.

- Incomplete versions of a system can be
inspected without additional costs. It a program
IS incomplete, then you need to develop
specialized test harnesses to test the parts that
are available.

- As well as searching for program defects, an
inspection can also consider broader quality
attributes of a program, such as compliance
with standards, portability and maintainability.

[nspection checklists

« Checklist of common errors should be used
to drive the inspection.

. Error checklists are programming language
dependent and reflect the characteristic
errors that are likely to arise in the language.

n general, the 'weaker' the type checking,
the larger the checklist.

- Examples: Initialisation, Constant naming,
ole]e
termination, array bounds, etc.

Agile methods and inspections

- Agile processes rarely use formal inspection or
DEEr review Processes.

- Rather, they rely on team members cooperatin
to check each other’s code, and informail
guidelines, such as ‘check before check-in’
which suggest that programmers should chec
their own code.

- Extreme programming practitioners argue tha
oair programming is an effective substitute for
inspection as this is, in effect, a continual
INspection process.

- Two people look at every line of code and check
it before it is accepted.

Execution-pased Testing

» “The process of inferring certain
nehavioral properties of a product
nased, in part, on results of executing
the product in a known environment
with selected inputs”

Testing is the process of exercising a program with the
specific intent of finding errors prior to delivery to the
end user

Exnhaustive

There are 10“posslble paths! If we execute one

test per millisecond, it would take 3,170 years to
test this proaram!!

Who Should Test the Software”

- Developer

~ag
an -

- Understands the system
- Driven by “delivery”
. Tests ‘gently”

o™ L)] S -
— | " SN =
R — s

{ DD © Owin Buie s e

Weban, ¢ M
& o
anen

~ ehilen
O\ wiin

VIRWn
% Do

CHAUMO G
i) e G 201
SN Moo M
DO Grway v Ny «Rb—‘ ‘."H"U"I""“"H“
Q Vi ygua
\ Q9 upey g
SN0 DIy
muvuvllvm

Unizivng .

aouin 0@

VO ARG .

»aawn o w5 0] -

o G NN Snoa e

Y v nnuuuuu“‘,mu&n": Eoroieim
FR T L T (T T
3 UMM oG e R
3 Wy ay o - AR IR
2 aMyuniy @ Lo WiE OVIO DA -
10100 ot 47 M VIO DO DIND © 1K DM : Agaabuun

Lo (upaiipal 00 O 0 umna g o RN e

© Adinonaniny uUigy W

©] wixa eMigil) @ “

A ~. . | 7 W@ 0mLnnn
. |Nndependent tester

D &
> Do 11) (10

@
3
i~
1]
-~
=
I3
3
£
1 4
2
=
g
3
g
3
:
2
;
z
¢
3
v
%
£

G e s 2UACD T
=
A~ dun gy, '
) DTN UIKY @y s -
SEBA! 0T (D) AL o) =
A0 o0 o oamis vy Y Kt
e o ™o VAU I © SN,

LD Oy v o MDY

oy

ORI A e
kbl E PPZINTY 5

(O a
Prpr R

@1 QN i Gy
Kl o PP U Ias n TG
R 4D wedd :uzvurna, n‘u.uu\?.(.\
eponre o S0
2 OANel ag

) !] . & | © (Dt & S,\;!"‘G‘.uw, DuDRING
Y ! Z 2 63 D v o v auiN Valawg “n
ten s WD o v o SOIA NIV dWLL &
OO L) UNE U ISV w1 e
| o eeadon
Must | bout th { - 3
° L]
. | t i | G OO bm gunisna d -y -
ol Y A 0I0 Gsnlg ()) O AR TR
- ¢ Loalawe' ¢
. S n g':lll
| S Ao
i . O PR D OIOYE DUEIT DB EOMND bt |
Will att t to break the system '

§' QU
Nnne St
3

Eron wld
O¥®t . vam R0
I AD A

2 SWOu)oWwIN0IGN
G g

I EARTVTH BT

© YAt uIia

< W N gam 2100 ¥a 7Y CUNIN

FUI IR en ouore

R) Jihe
|

S ehum g
e———T 1 RN

- Customer
- Acceptance testing

) @p)
- B3 2
O O C
& s g &8
O O D =
"v p 1 @p) -
- » O
- @) C 4
e e ~—
N O O O mO e
Q =8 G c 2 8
c O O O O -
O oo O © O 3
O S o N L O o
m s C = mvuh %
O MO = c 3 O
P 25 £, BZ T
o O O 5 NG AVU
D o D - O
n N O O mV -
® s £ 2. C 0
— o O
) O O N O C -
m_m\w < 7 Z n O Lil
T ® Y ® Y

Assessing Software Quality

,

Many “'Few ..j‘

faults Faults *

Low P i\ High

-

Software quality ﬁ' <
Few Few }

Faults
Faults } f
!,,__/ e S
d ‘ B

[esting Strategy: The V-model

Developer's life Cycle Tester's life Cycle
Acceptance
Test Design
Requirement < » Acceptance
Analysis Testing
| A
System

System < Test Design , System
ya Design Testing ¢
o 7]

“x %)
= v
o | S
o Integration N
< < Test Design > Integration Q
% Testing §
e '~
2 I
. °\
?}(\0 Module US;EE: t Unit @
N RS Testing

‘esting policies

- xhaustive system testing is impossible so
testing policies which define the required
system test coverage may be developed.

Examples of testing policies:

. All system functions that are accessed
through menus should be tested.

- Combinations of functions (e.g. text
formatting) that are accessed through
the same menu must be tested.

- Where user input is provided, all
functions must be tested with both
correct and incorrect input.

—

Prioritizing lests

Time is always limited

Use risk to focus testing effort
what to test first

WNAat
how t

(o test Ir

norough

ost
v to test each feature

what not to test (at least for now)

Most important tests first

Possible ranking criteria

test where a failure would be most
severe

test where failures would be most
visible
test where failures are most likely

ask the customers to prioritise the
requirements

what is most critical to the
customer's business

areas changed most often

areas with most problems in the
past

most complex or technically
critical areas

Realities in Software Testing

- Testing can show the presense of
errors but cannot show their absense

- All bugs cannot be found

. Testing does not create quality
software or remove defects

- Not all bugs found will be fixed

. Testing focuses on critiquing the
oroduct, not the developer(s)

An iInput-output model of program testing

Y
v \ |
@ test results 5 Outputs which reveal
e / the presence of
defects

A model of the software testing Process

Test Test Test

—> —> —> —> fe
cases | | | reports
Design test Pre p t st Run program Com
sssss with test data to t t

Stages of testing

- Development testing, where the system
s tested during development to
discover bugs and defects.

- Release testing, where a separate
testing team test a complete version of
the system before it is released to users.

- User testing, where users or potential
users of a system test the system in
thelr own environment.

Development testing

- Development testing includes all testing activities that
are carried out by the team developing the system.

- Unit testing, where individual program units or
object classes are tested. Unit testing should focus
on testing the functionality of objects or methods.

- Component testing, where several individual units
are integrated to create composite components.
Component testing should focus on testing
component interfaces.

- System testing, where some or all of the
components in a system are integrated and the
system is tested as a whole. System testing should
focus on testing component interactions.

Unit testing

. Unit testing is the process of testing
individual components in isolation.

. |t is a defect testing process.

. Units may be:
. Individual functions or methods within an
object
- Object classes with several attributes
and methods

- Composite components with defined
interfaces used to access their
functionality.

" N INM "
RBINN FITERRSER

| HIA AR
S N e GBI

v My fuosk tehoy

Smm—
. N = PMMIM | KiButn o
& A ‘

Automated testing

- Whenever possible, unit testing should be
automated so that tests are run and checked
without manual intervention.

- |In automated unit testing, you make use of d
test automation framework (such as JUnit) to
write and run your program tests.

- Unit testing frameworks provide generic test | 'gg;ﬁ'”“sgggg"s“i"‘
classes that you extend to create specific test
cases. They can then run all of the tests that
you have implemented and report, often
through some GUI, on the success of
otherwise of the tests.

Rand i M

lesting strateglies

. Partition testing, where you identity groups
of inputs that have common
characteristics and should be processed in
the same way.

. You should choose tests from within
each of these groups.

- Guideline-based testing, where you use
testing guidelines to choose test cases.

- These guidelines reflect previous
experience of the kinds of errors that
orogrammers often make when
developing components.

~quilva.

ence partitions

Less than 4

Between 4 and 10

More than 10

Number of input values

9999 1

10000 50000 99999

I

00000

!

Less than 10000

Between 10000 and 99999

More than 99999

Input values

Testing guldelines (sequences)

. Test software with sequences which
have only a single value.

. Use sequences of different sizes in
different tests.

- Derive tests so that the first, middle and
ast elements of the sequence are
accessed.

. Test with sequences of zero length.

General testing guidelines

- Choose inputs that force the system to
generate all error messages

- Design inputs that cause input buffers to
overflow

- Repeat the same input or series of iNnputs
nuMmerous times

- Force invalid outputs to be generated

- Force computation results to be too large
or too small.

oystem testing

- System testing during development involves
integrating components to create a version of
the system and then testing the integrated
system.

- The focus in system testing is testing the
interactions between components.

. System testing checks that components are
compatible, interact correctly and transfer the
right data at the right time across their
interfaces.

- System testing tests the emergent behaviour of
a system.

Use-case testing

The use-cases developed to identify

system interactions can be used as d
basis for system testing.

Fach use case usually involves several

system components so testing the use
case forces these interactions to occur.

The sequence diagrams associated

with the use case documents the

CO

bei

mponents and interactions that are

ng tested.

Test-driven development

. Test-driven development (TDD) is an approach
to program development in which you inter-
leave testing and code development.

. Tests are written before code and ‘passing’ the
tests is the critical driver of development.

- You develop code incrementally, along with @
test for that increment. You don’'t move on to
the next increment until the code that you
nave developed passes its test.

- TDD was introduced as part of agile methods
such as Extreme Programming. However, it can
also be used in plan-driven development
Orocesses.

New feature as Test
(from specifications)

Repeat

Write the simplest
code that passes
the new test

Refactor as needed, using
tests after each refactor

[est-driven development

dentify new pass
functio Ity

£l Implement
Ctht>—><Rtt>—><> »| fun t Ityd

DD process activities

. Start by identifying the increment of functionality
that is required. This should normally be small
and implementable in a few lines of code.

- Write a test for this functionality and implement
this as an automated test.

- Run the test, along with all other tests that have
been implemented. Initially, you have not
implemented the functionality so the new test
will fail.

- Implement the functionality and re-run the test.

- Once all tests run successfully, you move on to
implementing the next chunk of functionality.

Benelits of test-driven
development

Code coverage

- Every code segment that you write has at least
one associated test so all code written has at least
one test.

Regression testing

- A regression test suite is developed incrementally
as a program is developed.

Simplified debugging
« When a test fails, it should be obvious where the

oroblem lies. The newly written code needs to be
checked and modified.

System documentation

« The tests themselves are a form of documentation
that describe what the code should be doing.

Regression testing

- Regression testing is testing the system
to check that changes have not

‘oroken’ previously worki

ng code.

- In a manual testing process, regression

testing is expensive but, with

automated testing, it is simple and

straightforwarc

time a change

« Jests must run ‘'su

. All tests a

IS Made to

change is committed.

e rer

the p

un every

rogram.

ccessfully’ before the

T 1

~

191 DOI[0.10E207

release testing

Release testing is the process of testing a
oarticular release of a system that is intended for

use outside of the development team.

The primary goal of the release testing process is
to convince the supplier of the system that it is
good enough for use.

- Release testing, therefore, has to show that
the system delivers its specified functionality,
oerformance and dependability, and that it
does not fail during normal use.

- Release testing is usually a black-box testing
orocess where tests are only derived from the

system specification.

Releasetestingand «g
system testing o S

- Release testing is a form of system testing.

- Important differences:

- A separate team that has not been
involved in the system development,
should be responsible for release testing.

. System testing by the development team
should focus on discovering bugs in the
system (defect testing). The objective of
release testing is to check that the
system meets its requirements and is
good enough for external use (validation
testing).

Performance testing

. Part of release testing may involve testing the
emergent properties of a system, such as
oerformance and reliability.

. Tests should reflect the profile of use of the
system.

- Performance tests usually involve planning a
series of tests where the load is steadily
increased until the system performance
becomes unacceptable.

. Stress testing is a form of performance testing
where the system is deliberately overloaded to
test its failure behaviour.

User testing

- User or customer testing is a stage in the
testing process in which users or customers
orovide input and advice on system testing.

- User testing is essential, even when
comprehensive system and release testing
have been carried out.

- The reason for this is that influences from
the user’'s working environment have o
major effect on the reliability,
oerformance, usability and robustness of
a system. These cannot be replicated in a
testing environment.

b] » 3
7V‘{ A “s PR
LT T R
WL\ AR } % 4\
I ARR R 3 A Waas ; ¢
{ : A 3 o4 i ¢ €% :
A 4 g 2 e ’;‘:.Q“‘ L R 4 - .v‘:'n
1] - e - .
. < 2P & 3 f NPIRA
3 .hdﬂ #Q&K&&L & .‘<t"’~ .

AL, !
“&"A-' UK *

AR e
S

['vpes of user testing

Alpha testing

- Users of the software work with the development
team to test the software at the developer’s site.

Beta testing

- A release of the software is made available to
users to allow them to experiment and to raise
oroblems that they discover with the system
developers.

Acceptance testing

- Customers test a system to decide whether or
not it is ready to be accepted from the system
developers and deployed in the customer
environment. Primarily for custom systems.

‘he acceptance testing process

> Test »| Test | > Tests o | Test Testing
crltena plan results report

:

Define PIan Derlve Negotlat Accept or
acce_pta_nce acceptance acceptance acceptance test results —> reject
criteria testing tests tests system

Agile methods and acceptance

testing

. In XP, the user/customer is part of the

development team and is responsible for making
decisions on the acceptability of the system.

. Tests are defined by the user/customer and are
integrated with other tests in that they are run
automatically when changes are made.

- There is no separate acceptance testing

Process.

- Main problem here is whether or not t
embedded user is typical’ and can re
interests of all system stakeholders.

e

oresent the

T
i
N\
. —
-“‘;M"—“

‘

- TR e — e e - - o u
x

User Feedback, 9%
Approval.

Re-test]

- Run a test, it fails, fault reported

« New version of software with fault
“tixed”

e Re-runthe same test (i.e. re-test

- must be exactly repeatable

« same environment, versions (except
for the intentionally changed software

« same inputs and preconditions

. | test now passes, fault has been fixed
correctly—or has it?

—

oMmoke lesting

G

a2 do
i ‘9

& Iy ¢
a2y
I

- A common approach when using “daily builds”

+ Smoke testing steps 1N . s
o - S == j\\ gmqmu-ﬁ"mg =k
: : | 0 kR _ BLERERRRRE WIS ¥ei
. Software components are integrated into | |[|| o S
. os ' || = - B §a 54 ‘wween say
ouila HN R E ..
* A build includes all data files, libraries, reusable & T e NPT

modules, and engineered components that are
required to implement one or more features

- A series of tests is designed to expose errors

* The intent is to uncover “show stopper” errors

that have the highest likelihood of throwing the
oroject behind schedule

- The build is integrated with other builds and the
entire product is smoke tested daily

