
Prof. Casper Lassenius

Software Quality
Assurance and
Testing

What is Software Quality?

Software Quality

• Quality, simplistically, means that a product
should meet its specification.

• This is problematical for software systems
• There is a tension between customer

quality requirements (efficiency,
reliability, etc.) and developer quality
requirements (maintainability, reusability,
etc.);

• Some quality requirements are difficult to
specify in an unambiguous way;

• Software specifications are usually
incomplete and often inconsistent.

Validation

Verification

Software Quality

• Standard Glossary of Software
Engineering Terminology [IEEE610.12]:

• The degree to which a system,
component or process meets
specified requirements

• The degree to which a system,
component, or process meets
customer or user needs or
expectations

ISO 25010 Product
Quality
Characteristics

• Nine main quality characteristics, each divided
into sub-characteristics

• Uses

• Eliciting and defining requirements

• Validating the requirements definition

• Identifying design and testing objectives

• Identifying quality control and acceptance
criteria

• Establishing quality measures

Stakeholder Viewpoints

• All stakeholders have different viewpoints
• Customer
• User
• Programmer
• Project manager
• Tester

• Note: even a bug-free product can be
unacceptable to the user

• User scenarios (use-cases) should be validated
• Requirements should be validated
• Usability needs to be considered
• Documentation should be tested
• Customer feedback process needs to be working

Quality conflicts

• It is not possible for any system to be
optimized for all of these attributes – for
example, improving robustness may lead to
loss of performance.

• The quality plan should therefore define the
most important quality attributes for the
software that is being developed.

• The plan should also include a definition of
the quality assessment process, an agreed
way of assessing whether some quality, such
as maintainability or robustness, is present in
the product.

Process and product quality

• The quality of a developed product is influenced
by the quality of the production process.

• This is important in software development as some
product quality attributes are hard to assess.

• However, there is a very complex and poorly
understood relationship between software
processes and product quality.
• The application of individual skills and

experience is particularly important in software
development;

• External factors such as the novelty of an
application or the need for an accelerated
development schedule may impair product
quality.

Ensuring Software Quality

• Understand what quality means in
your context

• Build quality in using appropriate
processes

• Quality assurance
• Testing
• Reviews / Inspections

Inspections and testing

Reviews and inspections

• A group examines part or all of a process or
system and its documentation to find potential
problems.

• Software or documents may be 'signed off' at a
review which signifies that progress to the next
development stage has been approved by
management.

• There are different types of review with different
objectives
• Inspections for defect removal (product);
• Reviews for progress assessment (product and

process);
• Quality reviews (product and standards).

Quality reviews

• A group of people carefully examine part
or all
of a software system and its associated
documentation.

• Code, designs, specifications, test plans,
standards, etc. can all be reviewed.

• Software or documents may be 'signed
off' at a review which signifies that
progress to the next development stage
has been approved by
management.

Inspections and testing

•Inspections and testing are complementary
and not opposing verification techniques.

•Both should be used during the V & V
process.

•Inspections can check conformance with a
specification but not conformance with the
customer’s real requirements.

•Inspections cannot check non-functional
characteristics such as performance,
usability, etc.

The software review process

Reviews and agile methods

• The review process in agile software
development is usually informal.
• In Scrum, for example, there is a review

meeting after each iteration of the software
has been completed (a sprint review), where
quality issues and problems may be discussed.

• In extreme programming, pair programming
ensures that code is constantly being examined
and reviewed by another team member.

• XP relies on individuals taking the initiative to
improve and refactor code. Agile approaches are
not usually standards-driven, so issues of
standards compliance are not usually
considered.

Program inspections

• These are peer reviews where engineers
examine the source of a system with the aim
of discovering anomalies and defects.

• Inspections do not require execution of a
system so may be used before
implementation.

• They may be applied to any representation of
the system (requirements,
design,configuration data, test data, etc.).

• They have been shown to be an effective
technique for discovering program errors.

Advantages of inspections

• During testing, errors can mask (hide) other
errors. Because inspection is a static process,
you don’t have to be concerned with
interactions between errors.

• Incomplete versions of a system can be
inspected without additional costs. If a program
is incomplete, then you need to develop
specialized test harnesses to test the parts that
are available.

• As well as searching for program defects, an
inspection can also consider broader quality
attributes of a program, such as compliance
with standards, portability and maintainability.

Inspection checklists

• Checklist of common errors should be used
to drive the inspection.

• Error checklists are programming language
dependent and reflect the characteristic
errors that are likely to arise in the language.

• In general, the 'weaker' the type checking,
the larger the checklist.

• Examples: Initialisation, Constant naming,
loop
termination, array bounds, etc.

Agile methods and inspections

• Agile processes rarely use formal inspection or
peer review processes.

• Rather, they rely on team members cooperating
to check each other’s code, and informal
guidelines, such as ‘check before check-in’,
which suggest that programmers should check
their own code.

• Extreme programming practitioners argue that
pair programming is an effective substitute for
inspection as this is, in effect, a continual
inspection process.

• Two people look at every line of code and check
it before it is accepted.

Execution-based Testing

• “The process of inferring certain
behavioral properties of a product
based, in part, on results of executing
the product in a known environment
with selected inputs”

Testing is the process of exercising a program with the
specific intent of finding errors prior to delivery to the
end user

Exhaustive Testing

Who Should Test the Software?

• Developer
• Understands the system
• Driven by “delivery”
• Tests “gently”

• Independent tester
• Must learn about the system
• Driven by quality
• Will attempt to break the system

• Customer
• Acceptance testing

Testing — Some Observations

• A professional programmer produces
~6 faults/1000 lines of code

• New program with 200 000 LOC has
~1200 faults

• Program that have been in use for
long have ~1 fault/1000 LOC

• Error removal costs ca 12h/fault

Assessing Software Quality

Testing Strategy: The V-model

Testing policies

• Exhaustive system testing is impossible so
testing policies which define the required
system test coverage may be developed.

• Examples of testing policies:
• All system functions that are accessed

through menus should be tested.
• Combinations of functions (e.g. text

formatting) that are accessed through
the same menu must be tested.

• Where user input is provided, all
functions must be tested with both
correct and incorrect input.

Prioritizing Tests

• Time is always limited

• Use risk to focus testing effort
• what to test first
• what to test most
• how thoroughly to test each feature
• what not to test (at least for now)

• Most important tests first

• Possible ranking criteria

• test where a failure would be most
severe

• test where failures would be most
visible

• test where failures are most likely

• ask the customers to prioritise the
requirements

• what is most critical to the
customer’s business

• areas changed most often

• areas with most problems in the
past

• most complex or technically
critical areas

Realities in Software Testing

• Testing can show the presense of
errors but cannot show their absense

• All bugs cannot be found

• Testing does not create quality
software or remove defects

• Not all bugs found will be fixed

• Testing focuses on critiquing the
product, not the developer(s)

An input-output model of program testing

A model of the software testing process

Stages of testing

• Development testing, where the system
is tested during development to
discover bugs and defects.

• Release testing, where a separate
testing team test a complete version of
the system before it is released to users.

• User testing, where users or potential
users of a system test the system in
their own environment.

Development testing

• Development testing includes all testing activities that
are carried out by the team developing the system.

• Unit testing, where individual program units or
object classes are tested. Unit testing should focus
on testing the functionality of objects or methods.

• Component testing, where several individual units
are integrated to create composite components.
Component testing should focus on testing
component interfaces.

• System testing, where some or all of the
components in a system are integrated and the
system is tested as a whole. System testing should
focus on testing component interactions.

Unit testing

• Unit testing is the process of testing
individual components in isolation.

• It is a defect testing process.

• Units may be:
• Individual functions or methods within an

object
• Object classes with several attributes
and methods

• Composite components with defined
interfaces used to access their
functionality.

Automated testing

• Whenever possible, unit testing should be
automated so that tests are run and checked
without manual intervention.

• In automated unit testing, you make use of a
test automation framework (such as JUnit) to
write and run your program tests.

• Unit testing frameworks provide generic test
classes that you extend to create specific test
cases. They can then run all of the tests that
you have implemented and report, often
through some GUI, on the success of
otherwise of the tests.

Testing strategies

• Partition testing, where you identify groups
of inputs that have common
characteristics and should be processed in
the same way.
• You should choose tests from within

each of these groups.

• Guideline-based testing, where you use
testing guidelines to choose test cases.
• These guidelines reflect previous

experience of the kinds of errors that
programmers often make when
developing components.

Equivalence partitions

Testing guidelines (sequences)

• Test software with sequences which
have only a single value.

• Use sequences of different sizes in
different tests.

• Derive tests so that the first, middle and
last elements of the sequence are
accessed.

• Test with sequences of zero length.

General testing guidelines

• Choose inputs that force the system to
generate all error messages

• Design inputs that cause input buffers to
overflow

• Repeat the same input or series of inputs
numerous times

• Force invalid outputs to be generated

• Force computation results to be too large
or too small.

System testing

• System testing during development involves
integrating components to create a version of
the system and then testing the integrated
system.

• The focus in system testing is testing the
interactions between components.

• System testing checks that components are
compatible, interact correctly and transfer the
right data at the right time across their
interfaces.

• System testing tests the emergent behaviour of
a system.

Use-case testing

• The use-cases developed to identify
system interactions can be used as a
basis for system testing.

• Each use case usually involves several
system components so testing the use
case forces these interactions to occur.

• The sequence diagrams associated
with the use case documents the
components and interactions that are
being tested.

Test-driven development

• Test-driven development (TDD) is an approach
to program development in which you inter-
leave testing and code development.

• Tests are written before code and ‘passing’ the
tests is the critical driver of development.

• You develop code incrementally, along with a
test for that increment. You don’t move on to
the next increment until the code that you
have developed passes its test.

• TDD was introduced as part of agile methods
such as Extreme Programming. However, it can
also be used in plan-driven development
processes.

Test-driven development

TDD process activities

• Start by identifying the increment of functionality
that is required. This should normally be small
and implementable in a few lines of code.

• Write a test for this functionality and implement
this as an automated test.

• Run the test, along with all other tests that have
been implemented. Initially, you have not
implemented the functionality so the new test
will fail.

• Implement the functionality and re-run the test.

• Once all tests run successfully, you move on to
implementing the next chunk of functionality.

Benefits of test-driven
development

• Code coverage
• Every code segment that you write has at least

one associated test so all code written has at least
one test.

• Regression testing
• A regression test suite is developed incrementally
as a program is developed.

• Simplified debugging
• When a test fails, it should be obvious where the

problem lies. The newly written code needs to be
checked and modified.

• System documentation
• The tests themselves are a form of documentation

that describe what the code should be doing.

Regression testing

• Regression testing is testing the system
to check that changes have not
‘broken’ previously working code.

• In a manual testing process, regression
testing is expensive but, with
automated testing, it is simple and
straightforward. All tests are rerun every
time a change is made to the program.

• Tests must run ‘successfully’ before the
change is committed.

Release testing

• Release testing is the process of testing a
particular release of a system that is intended for
use outside of the development team.

• The primary goal of the release testing process is
to convince the supplier of the system that it is
good enough for use.
• Release testing, therefore, has to show that

the system delivers its specified functionality,
performance and dependability, and that it
does not fail during normal use.

• Release testing is usually a black-box testing
process where tests are only derived from the
system specification.

Release testing and
system testing

• Release testing is a form of system testing.

• Important differences:
• A separate team that has not been

involved in the system development,
should be responsible for release testing.

• System testing by the development team
should focus on discovering bugs in the
system (defect testing). The objective of
release testing is to check that the
system meets its requirements and is
good enough for external use (validation
testing).

Performance testing

• Part of release testing may involve testing the
emergent properties of a system, such as
performance and reliability.

• Tests should reflect the profile of use of the
system.

• Performance tests usually involve planning a
series of tests where the load is steadily
increased until the system performance
becomes unacceptable.

• Stress testing is a form of performance testing
where the system is deliberately overloaded to
test its failure behaviour.

User testing

• User or customer testing is a stage in the
testing process in which users or customers
provide input and advice on system testing.

• User testing is essential, even when
comprehensive system and release testing
have been carried out.
• The reason for this is that influences from

the user’s working environment have a
major effect on the reliability,
performance, usability and robustness of
a system. These cannot be replicated in a
testing environment.

Types of user testing

• Alpha testing
• Users of the software work with the development

team to test the software at the developer’s site.

• Beta testing
• A release of the software is made available to

users to allow them to experiment and to raise
problems that they discover with the system
developers.

• Acceptance testing
• Customers test a system to decide whether or

not it is ready to be accepted from the system
developers and deployed in the customer
environment. Primarily for custom systems.

The acceptance testing process

Agile methods and acceptance
testing

• In XP, the user/customer is part of the
development team and is responsible for making
decisions on the acceptability of the system.

• Tests are defined by the user/customer and are
integrated with other tests in that they are run
automatically when changes are made.

• There is no separate acceptance testing
process.

• Main problem here is whether or not the
embedded user is ‘typical’ and can represent the
interests of all system stakeholders.

Re-testing

• Run a test, it fails, fault reported

• New version of software with fault
“fixed”

• Re-run the same test (i.e. re-test)
• must be exactly repeatable

• same environment, versions (except
for the intentionally changed software)

• same inputs and preconditions

• If test now passes, fault has been fixed
correctly—or has it?

Smoke Testing

• A common approach when using “daily builds”

• Smoke testing steps
• Software components are integrated into a

build
• A build includes all data files, libraries, reusable

modules, and engineered components that are
required to implement one or more features

• A series of tests is designed to expose errors
• The intent is to uncover “show stopper” errors

that have the highest likelihood of throwing the
project behind schedule

• The build is integrated with other builds and the
entire product is smoke tested daily

