# Geotechnical Engineering

Wojciech Sołowski Geoengineering Programme Leader 27th August 2024





|                             | Tuesday 27th August 2023, R5                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wednesday 28th August 2023, R266                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 8.30-10:00<br>10:00 - 11:30 | Chairman: Sanandam Bordoloi<br>8.30 <b>Welcome!</b> Introduction to Geoengineering Master<br>Programme (Wojtek Sołowski) and presentation of the<br>students<br><b>Study paths, courses and teaching / research</b><br><b>infrastructure:</b><br>9.20 Geotechnical Engineerring (Wojtek Sołowski,<br>Sanandam Bordoloi)<br>10.00 Highway Engineering (Yuxuan Sun)<br>10.30 Engineering Geology (Jussi Leveinen)<br>11.00 Photo session (Otto Hedström, Lauri Uotinen) | Chairman: Sanandam Bordoloi<br>8.45 - 9.15 Rock Mechanics (Mikael Rinne)<br>9.15 - 10.30 All Well! (Sanni Saarimäki)<br>10.30 - 10.45 Geotechnical and Rock Engineers' club presentation<br>(Otso Laurila, Juuso Eskelin)<br>10.45 - 11.15 Introduction to study services (Minna Marin)<br><b>11.15 - 11.30 Selection of study advisor</b>                                                                                                                                 |  |  |
| 11:30-12:00<br>12:00-13:00  | - Lunch break                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lunch break                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 13:00-14:00<br>14:00-15:00  | Tunnel and laboratories tour (Otto Hedström, Veli-Antti<br>Hakala)<br>~13.00 Geotechnical Laboratory (Alejandra Lopez-<br>Ramirez)<br>~13.25 General laboratory, testing hall<br>afterwards Highway laboratory<br>afterwards Research tunnel                                                                                                                                                                                                                          | Chairman: Sanandam Bordoloi<br><b>Presentations from industry (13.00-16.00)</b><br>13.00 - 13.25 Destia (Miia Paatsema, Kaisla Kivistö)<br>13.25 - 13.50 Ramboll (Piitu Kurtilla)<br>13.50 - 14.15 WSP (Emilia Köylijärvi?)<br>14.15 - 14.40 AFRY (Samu Portaankorva)<br>14.40 - 15.05 A-Insinöörit (Hamilkar Alava Bergroth)<br>15.05 - 15.30 Sitowise (Nina Tanskanen, likka Kronkvist)<br>15.30 - 15.55 SWECO (Juho Rahko)<br>15.55 - 16.00 Closure (Sanandam Bordoloi) |  |  |

## About me?



# Wojtek Sołowski

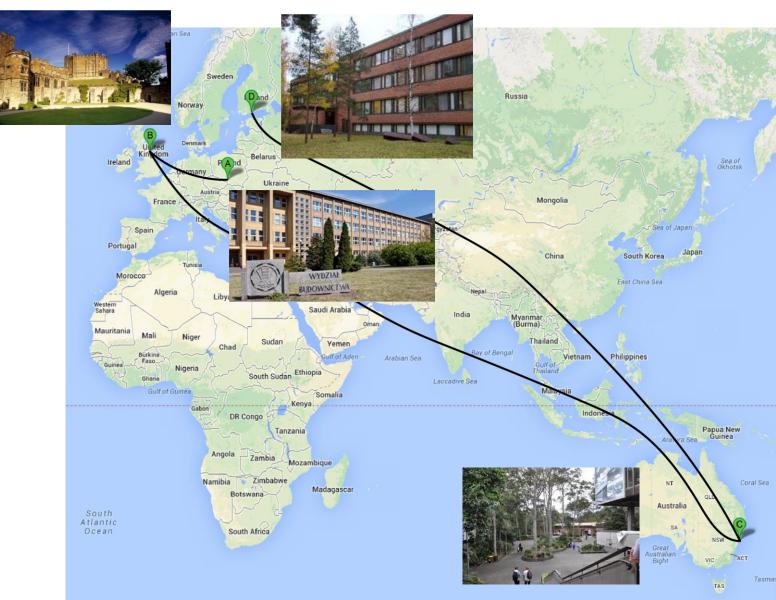
#### **Geotechnical Engineering**

- Numerical Methods
- Soil Modelling
- Director of the MSc programme
- International Secretary of Finnish Geotechnical Society
- Member of Eurocode committee
- Member of TC 106, unsaturated soils, ERTC7 numerical methods and numerical methods in EC7

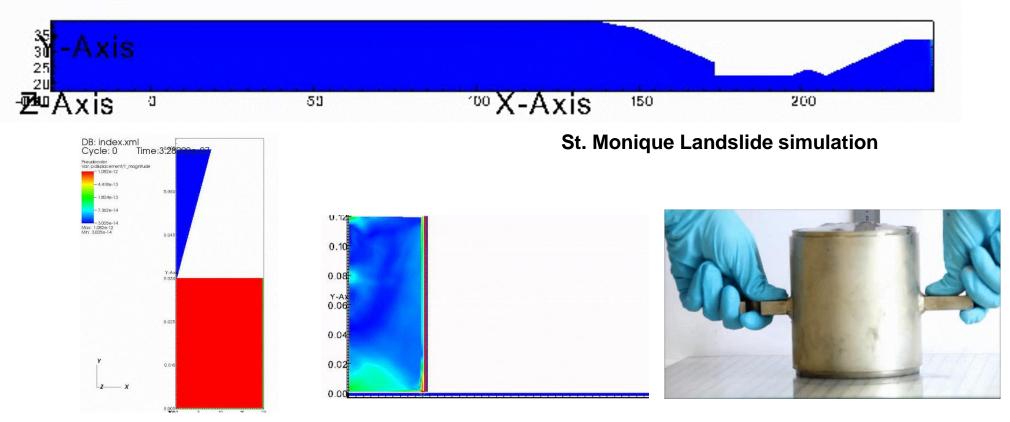


Aalto University School of Engineering




#### MSc:Politechnika Śląska, Gliwice, Poland

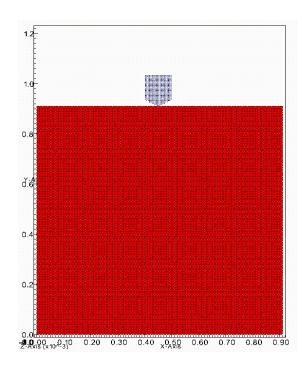
PhD: Durham University, Durham, UK 2005 - 2008


Research Associate: University of Newcastle, Australia 2009 - 2014

2014 onwards Aalto University, now Associate Professor (tenured)

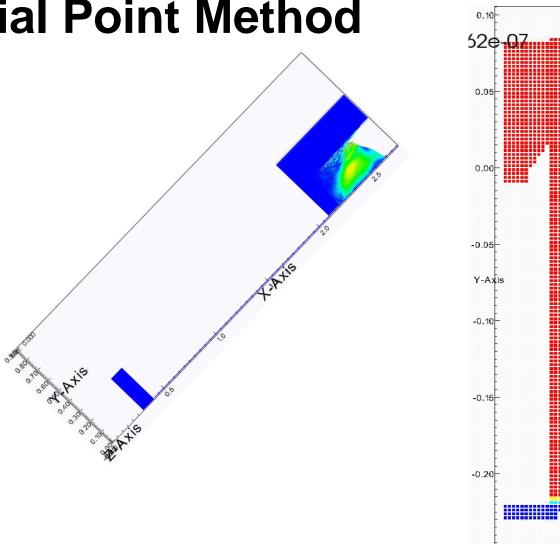





## Landslides and large deformations analyses





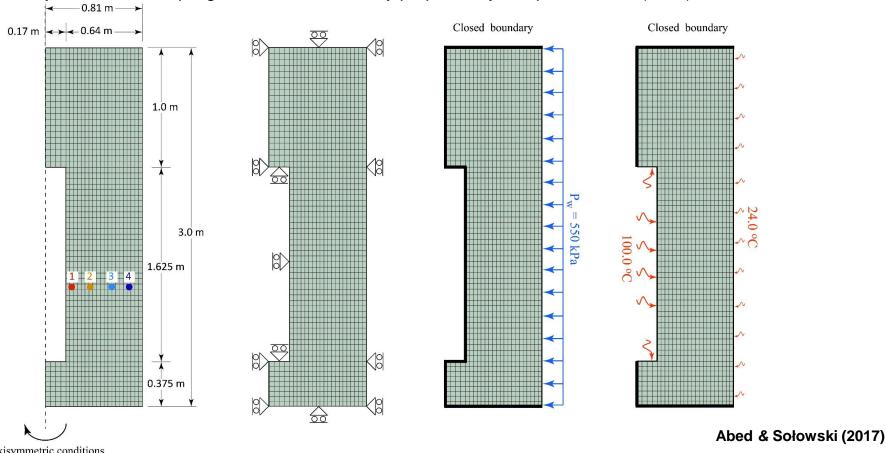

**Quickness test** 

## **Granular Material Point Method**



© S. Seyedan & Sołowski






-0.25

### **FE simulations: CIEMAT Mock-Up test**



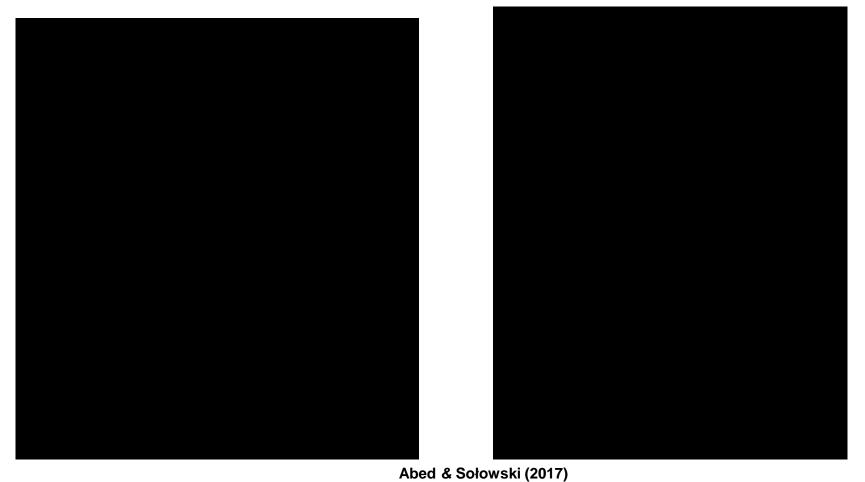
Example: Simulation of CIEMAT Mock-Up test for 2500 days (Martin et al. 2006) Autour The hydro-thermal coupling is based on the theory proposed by Philip & De Vries (1957).



Axisymmetric conditions

Geometry and Finite Element Mesh

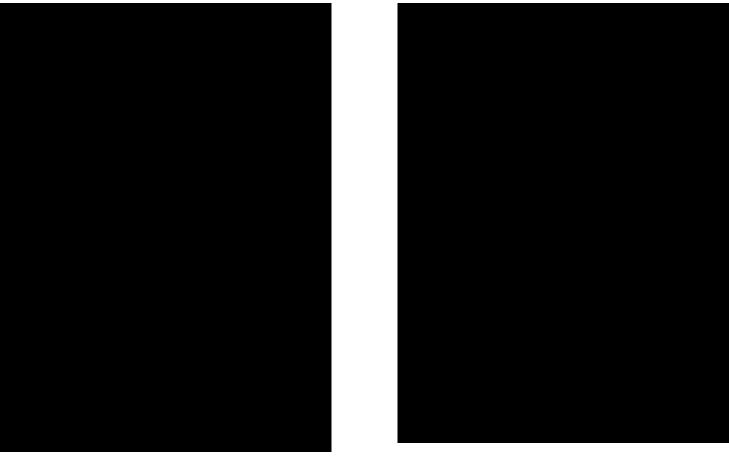
Mechanical boundary conditions


Hydraulic boundary conditions

Thermal boundary conditions

### **FE simulations: CIEMAT Mock-Up test**




Example: Simulation of CIEMAT Mock-Up test for 2500 days (Martin et al. 2006) Aalto Univ The hydro-thermal coupling is based on the theory proposed by Philip & De Vries (1957).



### **FE simulations: CIEMAT Mock-Up test**



Example: Simulation of CIEMAT Mock-Up test for 2500 days (Martin et al. 2006) Aalto University The hydro-thermal coupling is based on the theory proposed by Philip & De Vries (1957).



Abed & Sołowski (2017)

# **Associate Professor**

#### **Material Point Method research:**

- Academy Project, dynamic soil exchange, CompactIt project
- Business Finland grant, vibrations due to dynamic soil exchange, DeMiCo project
- **Bentonite research:** gas transport through bentonite, EU EURAD, Gas subproject

### **Offshore clay investigation:** Geomeasure project with GTK

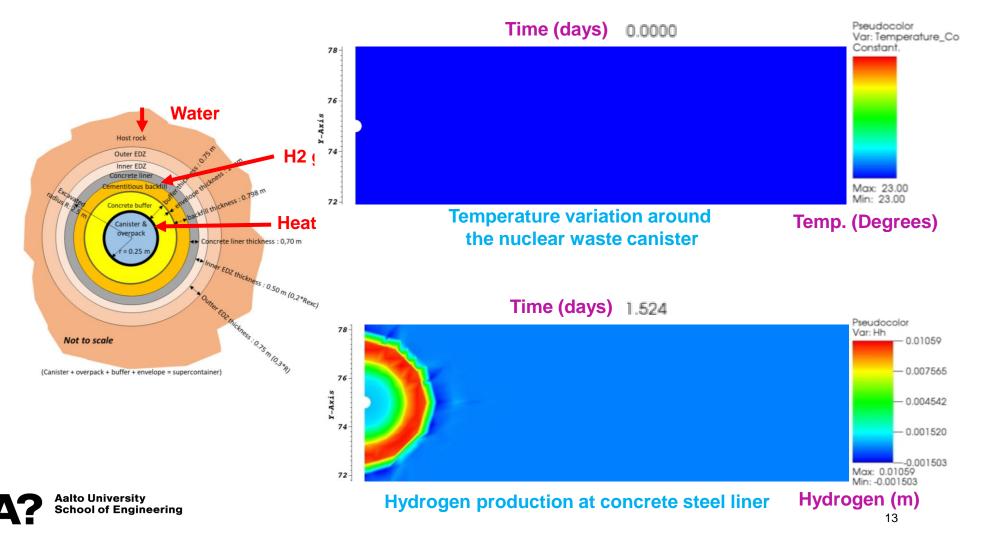




# **Associate Professor**

**Bentonite research:** gas transport through bentonite, EU EURAD, Gas subproject

 Hydrogen generated due to anaerobic corrosion of metal


$$Fe_{(s)} \;+\; 2\,H_2O \;
ightarrow \; Fe(OH)_2 \;+\; H_{2(g)}$$

- Gas pressure build up and migration
- THM(C) coupling and equations as in Abed et al. work.



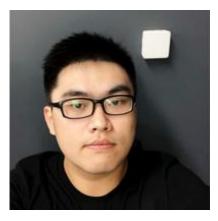


#### Application example: H2 gas is a potential threat to nuclear waste barrier



## **Abhishek Gupta**

Gupta, A., Abed, A. A., & Solowski, W. T. (2023). Identification of key thermal couplings affecting the bentonite behaviour in a deep geological nuclear waste repository. Engineering Geology, 324, Artikkeli 107251. <u>https://doi.org/10.1016/j.enggeo.2023.107251</u>


Gupta, A., Abed, A., & Sołowski, W. T. (2023). Implementation and validation of pressure-dependent gas permeability model for bentonite in FEM code Thebes. E3S Web of Conferences, 382, Artikkeli 02005. <u>https://doi.org/10.1051/e3sconf/202338202005</u>

2 more journal papers are coming, one in review, one in writing.





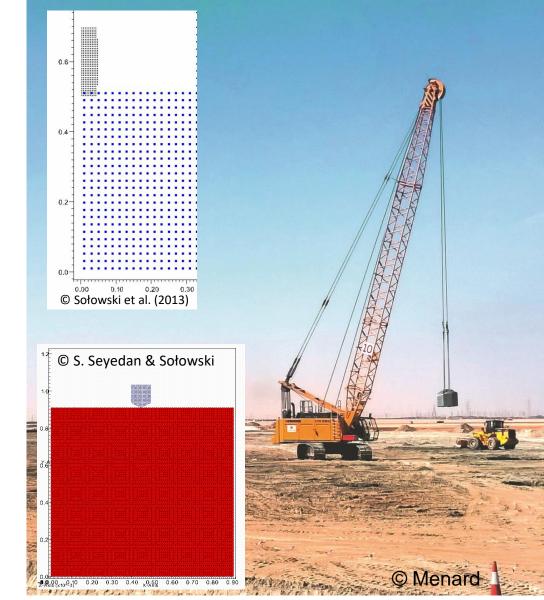
# **Chenjie Ruan**



Chenjie Ruan (doctoral student) Funding: Dean's scholarship

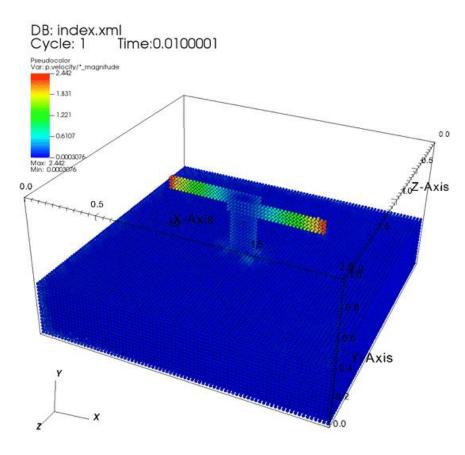
Continuation of the research:

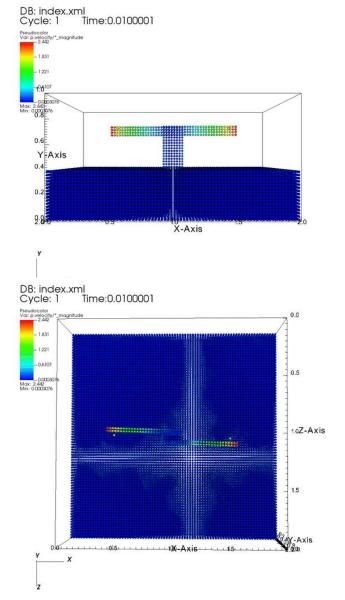
- adapting Thebes code for modelling soil freezing and thawing, as well are frost heave
- new theory 🙂






# **Compact It**


- **Duration: 2022 2026**
- Academy project, total budget 766,5 k€
- Grant holder: Wojciech Sołowski
- Methods: Granular Material Point Method simulations of low / zero emissions ground improvement methods
- Aim: New desing guidelines, optimisation of tools for ground improvement
- Academic partners: University of Utah, Chalmers University, Silesian University of Technology
- Industrial partners: Menard, Elu Konsult, Ramboll Finland, AFRY, Väylävirasto






#### Deep mixing method: MA Ying, doctoral student

#### Simulation result: Soil depth 0.4m





# DeMiCo

## Work Package 2 Dynamic Replacement

Wojciech Sołowski





## Geomeasure

Wojciech Sołowski & Joonas Virtasalo

- Survey Finnish coastal areas
  - Remote sensing
  - Free-fall marine cone penetrometer tests
  - Core samples
- Laboratory testing of the core samples
  - Mechanical properties
  - Behaviour under cyclic loading
- Numerical replication of the free-fall penetrometer tests, new correlations between the tests and sample properties
- Methods for wind turbines foundations

#### More: solowski.info/geomeasure



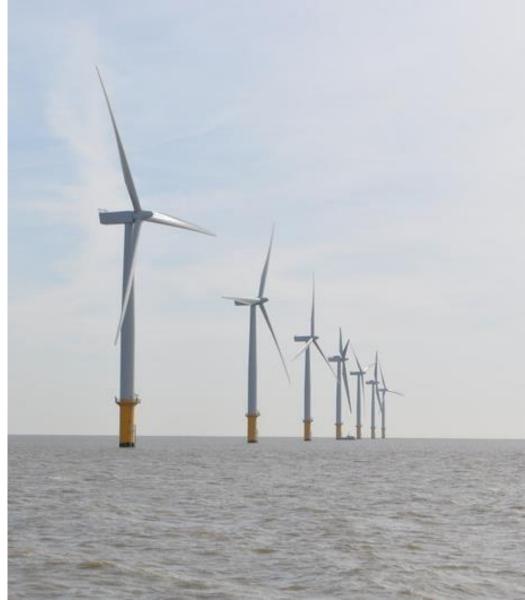






### Geomeasure Wojciech Sołowski & Joonas Virtasalo

#### **Applications:**


- Reliable surveying of seabed and accurate assessment of the seabed properties
- Simulation of interaction of structures and seabed
  - wind turbines foundations
  - seabed cables
  - underwater pipelines
  - risk of underwater landslides

#### More: solowski.info/geomeasure









# Geomeasure

Wojciech Sołowski & Joonas Virtasalo

### Dr Saeideh Mohammadi

- Laboratory testing of soils
- Classification tests
- Triaxial tests
- Cyclic triaxial tests
- Simple shear tests
- Cyclic simple shear tests
- Cyclic testing model development
- Frost testing (next project?)









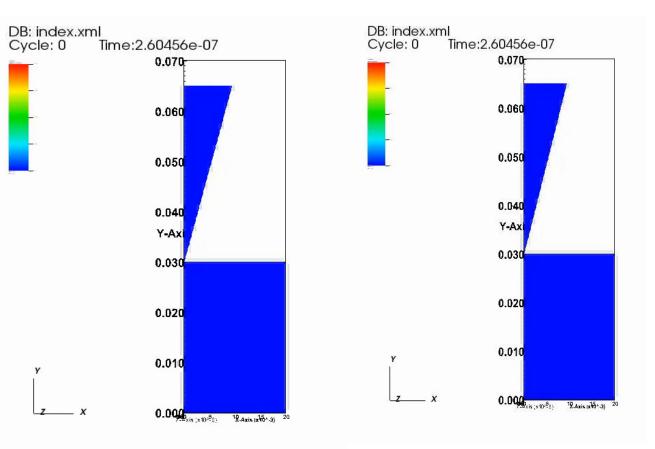
### **Geomeasure** Wojciech Sołowski & Joonas Virtasalo

#### **Dr Debasis Mohapatra**

- Material Point Method simulation
- Photogrammetry analysis of experiments
- Small scale fall cone test
- Simulation of free fall penetrometer tests

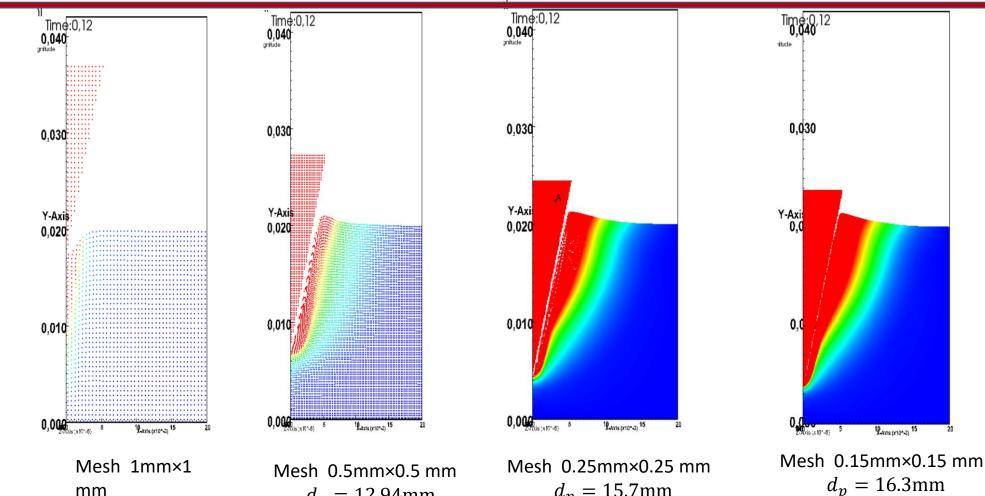









## Fall cone test simulation using MPM




#### Displacement



Velocity

### Effect of mesh density



mm  $d_p = 3.1$ mm  $d_p = 12.94$ mm

 $d_p = 15.7$  mm

## **Other research**

- Research for Väylävirasto
  - Vibrations caused by trains
  - Frost heave susceptibility
  - Other research?
- Numerical modelling, 2D, 3D, comparisons
- Model parametrization and use
- New constitutive models for soils
- Undrained shear strength, critical state
- Statistical interpretation of laboratory data
- Ideas, patents and cooperation with industry







## Geotechnical Engineering Courses

#### Tough but doable schedule – first year

| 1. autumn l                                                  | II                                                                              | 1. spring III                                                   | IV                                                                                                             | V                                                                     |
|--------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| GEO-E1020 Geotechnics                                        | <u>GEO-E1030 Structural</u><br><u>Design of Roads</u>                           | <u>GEO-E1040 Rock</u><br><u>Excavation</u>                      | <u>GEO-E1010 Engineering</u><br><u>Geology</u>                                                                 | <u>GEO-E2020 Numerical</u><br><u>Methods in</u><br><u>Geotechnics</u> |
| <u>CIV-E1030 Fundamentals of</u><br><u>Structural Design</u> | GEO-E2080 Foundation<br>Engineering and Ground<br>Improvement                   | <u>GEO-E3040 Geometric</u><br><u>Design of Roads</u>            | <u>GEO-E2010 Advanced</u><br>Soil Mechanics                                                                    | <u>GEO-E2040 Rock</u><br><u>Construction</u>                          |
|                                                              | <u>CIV-E1060 - Engineering</u><br><u>Computations and</u><br><u>Simulations</u> | <u>MS-E1653: Finite Element</u><br><u>Method D</u>              | <u>MS-E1653: Finite</u><br><u>Element Method D</u>                                                             |                                                                       |
|                                                              | <u>CIV-E1020 - Mechanics of</u><br><u>Beam and Frame Structures</u>             | <u>CIV-E4040 Reinforced</u><br><u>Concrete Structures (CIV)</u> | GEO-E2050 Bituminous<br>Materials and Mixtures<br>(Even years, next time<br>2024)                              |                                                                       |
| Colors:                                                      |                                                                                 |                                                                 | <u>GEO-E3030 Road</u><br><u>Maintenance and</u><br><u>Rehabilitation (Odd</u><br><u>years, next time 2025)</u> |                                                                       |
| Common studies (Compulsory)                                  | Advanced studies (Select at<br>least 40 credits, 8 courses)                     | Elective Studies                                                |                                                                                                                | -<br>                                                                 |



Total: 75 credits, 5 credit CIV concrete

### 2nd year

| 2. autumn I                                      | II | 2. spring III         | IV                                                                            | V |
|--------------------------------------------------|----|-----------------------|-------------------------------------------------------------------------------|---|
| GEO-E2030 Rock Mechanics                         |    | Master's Thesis 30 op |                                                                               |   |
| Prestressed and Precast<br>Concrete Structures D |    |                       | GEO-E2050 Bituminous<br>Materials and Mixtures<br>(Even years, next time      |   |
|                                                  |    |                       | <u>GEO-E3030 Road</u><br><u>Maintenance and</u><br><u>Rehabilitation (Odd</u> |   |
|                                                  |    |                       | <u>years, next time 2025)</u>                                                 |   |

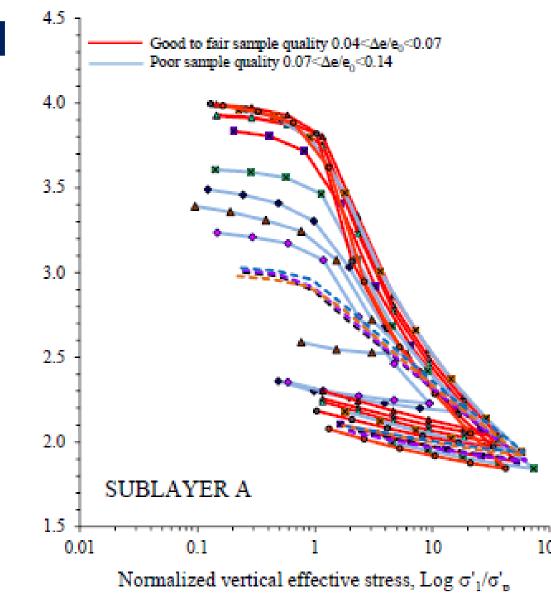
Total: 45 credits, 5 credit CIV concrete

Such a curriculum gives the most comprehensive education we can provide. If I calculated correctly, the curriculum will give you option to get highest FISE qualification in design of geotechnical structures (45 credits of Geotech + 15 Stuctural CIV) and infrastructure (10 credits of road design covered), plus it has 10 credits in concrete allowing for some FISE qualification in rock mechanics (the level depends on interpretation).



#### Tough but doable schedule – first year

| 1. autumn l                                                  | II                                                                  | 1. spring III                                                   | IV                                                                                                             | V                                                              |
|--------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| GEO-E1020 Geotechnics                                        | <u>GEO-E1030 Structural</u><br><u>Design of Roads</u>               | <u>GEO-E1040 Rock</u><br><u>Excavation</u>                      | <u>GEO-E1010 Engineering</u><br><u>Geology</u>                                                                 | <u>GEO-E2020 Numerical</u><br><u>Methods in</u><br>Geotechnics |
| <u>CIV-E1030 Fundamentals of</u><br><u>Structural Design</u> | GEO-E2080 Foundation<br>Engineering and Ground<br>Improvement       | <u>GEO-E3040 Geometric</u><br><u>Design of Roads</u>            | <u>GEO-E2010 Advanced</u><br><u>Soil Mechanics</u>                                                             | <u>GEO-E2040 Rock</u><br><u>Construction</u>                   |
|                                                              | Computations and                                                    | <u>MS-E1653: Finite Element</u><br><u>Method D</u>              | <u>MS-E1653: Finite</u><br><u>Element Method D</u>                                                             |                                                                |
|                                                              | <u>CIV-E1020 - Mechanics of</u><br><u>Beam and Frame Structures</u> | <u>CIV-E4040 Reinforced</u><br><u>Concrete Structures (CIV)</u> | GEO-E2050 Bituminous<br>Materials and Mixtures<br>(Even years, next time<br>2024)                              |                                                                |
| Colors:                                                      |                                                                     |                                                                 | <u>GEO-E3030 Road</u><br><u>Maintenance and</u><br><u>Rehabilitation (Odd</u><br><u>years, next time 2025)</u> |                                                                |
| Common studies (Compulsory)                                  | Advanced studies (Select at<br>least 40 credits, 8 courses)         | Elective Studies                                                |                                                                                                                | - ''                                                           |




Total: 75 credits, 5 credit CIV concrete

## GEO-E2010 Advanced Soil Mechanics

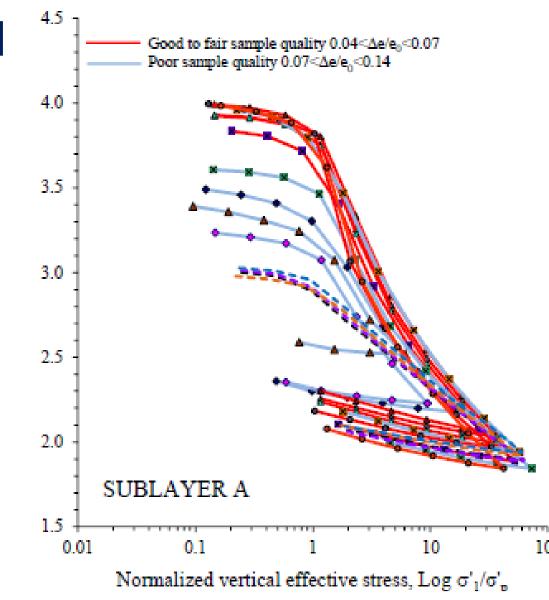
- Real soil behaviour
- Soil structure and microstructure
- Soil testing
- Constitutive models for soil
- Parameters estimation
- Critical State Soil Mechanics
- Water flow in soil

Aalto University School of Engineering



## GEO-E2010 Advanced Soil Mechanics

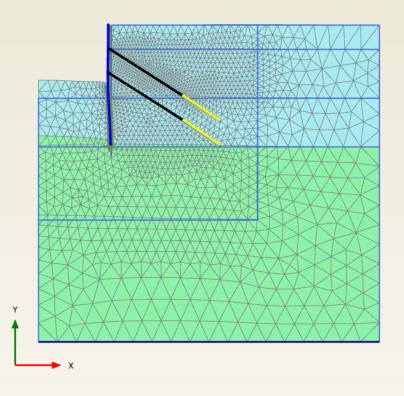
Obligatory prerequisites:


GEO-E1020 Geotechnics

**GEO-E1080** Foundation Engineering and Ground Improvement

Suggested pre-requisites:

**CIV-E1060** Engineering Computations and Simulations


Aalto University School of Engineering



## **GEO-E2020** Numerical Methods in Geotechnics

- Finite Element method in geotechnics and geoengineering
- Plaxis 2D software
- Advanced soil models
- Advanced soil analysis

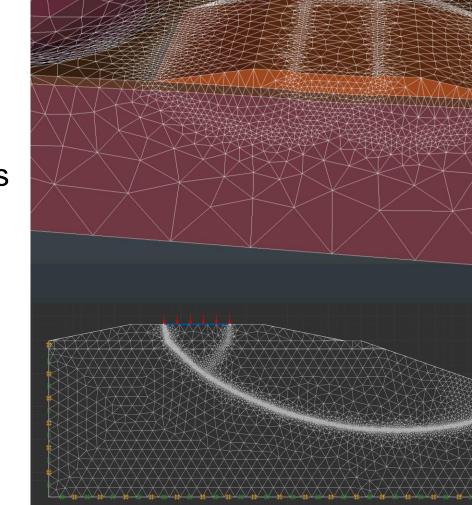
| TO6_  | T06_deep excavation HSS - Calculation results, Phase 6 (6/19), Deformed mesh [u]] |       |              |              |       |       |       |        |        |              |
|-------|-----------------------------------------------------------------------------------|-------|--------------|--------------|-------|-------|-------|--------|--------|--------------|
| netry |                                                                                   |       | resses Tools |              |       |       |       |        |        |              |
| > 😡   | S. S. S.                                                                          | + 🛛 🗉 | 🔳 📃 Phas     | e 6 (Step 19 | ) 🔽   |       |       |        |        |              |
| ,00   | -10,00                                                                            | 0,00  | 10,00        | 20,00        | 30,00 | 40,00 | 50,00 | 60,00  | 70,00  | 80,00        |
|       |                                                                                   |       |              | mulum        |       |       |       | huntun | hundum | ىلىتىتلىتىتك |



Deformed mesh |u| (scaled up 50,0 times) Maximum value = 0,07354 m (Element 1189 at Node 3480)

| (50,1 | 2 , -76,54)   | Plane strain     |                    |                   |                  |
|-------|---------------|------------------|--------------------|-------------------|------------------|
| e 6   | T06 Deep exca | T04-Stability of | 📄 figures-exercise | 20 PLAXIS 2D Calc | 22 PLAXIS Output |




## **GEO-E2020** Numerical Methods in Geotechnics

- Possible to get up to 5 extra credits 5cr → 10 cr
- There will be a number of options prepared, maybe including:
- Case studies
- Observational method example
- 3D calculations

alto University

ool of Engineering

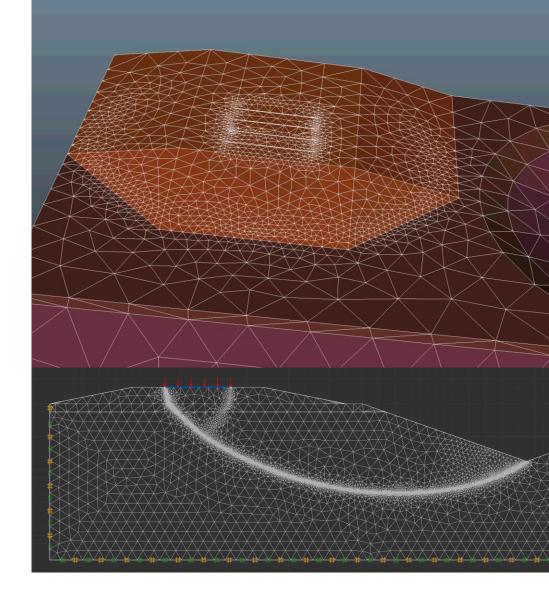
 (case studies with external supervisor)



## **GEO-E2020** Numerical Methods in Geotechnics

Obligatory prerequisites:

**GEO-E2010** Advanced Soil Mechanics


Suggested pre-requisites:

**CIV-E1060** Engineering Computations and Simulations

A Finite Element Method course, MS-E1653 or CIV-E4010 or...

Many others may be useful!







## Thank you