
Assignment 2 
 

 
1. As part of a software for modelling defects on fabricated silicon wafers you need to 

simulate a uniform distribution inside a circle. (You can choose the radius to be 𝑅 = 1.) In 
each of the cases below, generate 2000 points (𝑥, 	𝑦) and plot them. For comparison, you 
can also generate more points, for example 20 000 points; in doing so, you see why such 
geometric distributions sometimes need to be checked with a small number of points.  
a) (w = 2) First implement this using the rejection method by thinking of the circle being 

enveloped by a square. Generate 2000 points (𝑥, 	𝑦) and plot them. 
b) (w = 2) You want to make the simulation computationally more effective and not to 

reject any points, so you generate random points inside the circle by using polar 
coordinates, 𝑥 = 𝑟 cos(2𝜋𝜃) , 	𝑦 = 𝑟 sin(2𝜋𝜃), and drawing 𝑟 and 𝜃 from uniform 
distributions. Generate 2000 points (𝒙, 	𝒚) and plot them. Explain the outcome and 
the reason for it. 

c) Simulation of the circular uniform distribution by the inverse distribution method: 
Generate (𝑥, 	𝑦) from polar coordinates again drawing 𝜃 from uniform distribution but  
applying a proper transformation for the radius 𝑟 ∈ (0, 	𝑅): It is straightforward to see 
that the correct pdf is of the form 𝑝(𝑟) = 𝐶2𝜋𝑟, where 𝐶 is a constant to be 
determined from the condition  𝐹(𝑟 = 𝑅) = 1. 𝐹 is the cumulative distribution for 𝑟. 
(i) (w = 2) Determine the proper transformation for generating 𝒓. Show the 

derivation of this transformation in your answer. 
(ii) (w = 2) Implement an algorithm and generate and plot 2000 points (𝒙, 	𝒚) 

using this method.  
d) (w = 1) Compare the outcomes of b) and c). Explain the difference. (Hint: See the 

explanation of the method and the examples after that in Lecture 2.) 
 
2. This drill hopefully shows why you’re better off using log binning and scaling for many 

processes generating strongly skewed distributions, especially when data is scarce. 
 
Power-law distributions are common in nature and society. Here, we simulate the 
distribution that results when brittle material (e.g. rock) fragments in two dimensions such 
that the amount of energy (e.g. in impact) used is barely sufficient to cause the whole 
material volume to fracture. The mass distribution (PMF) of fragments, that is, the number 
of fragments # of mass 𝑥, is of the logarithmic (power-law) form #(𝑥) ∝ 𝑥!" #⁄  (> 0). 
Stochastic discrete processes are often treated as continuous. Accordingly, we take the pdf 
to be  𝑓(𝑥) = 𝐶	𝑥!"/#. 
a) (w = 2) Determine 𝐶  for the support (range) 𝑥 ∈ [1,∞). Then determine the 

corresponding distribution 𝐹(𝑥) and the inverse transformation 𝑥 = 	𝐹!&(𝑦) that is 
needed for sampling from it using the inverse distribution method and 𝑦 ∈ [0, 1). Show 
the derivation and 𝒙 = 	𝑭!𝟏(𝒚). 
Power-law distributions typically have exponential cut-offs, #(𝑥) ∝ 𝑥!" #⁄ 𝑒!(/), which 
in effect limits the range of the distribution. We ignored this to avoid complications in 
derivations. Accordingly, in order to set an appropriate range in 𝑥, we sample from 𝑦 ∈
(0, 𝐴]. So, substitute 𝑦 with 𝑦/𝐴 in the transformation and use that in the following 



simulations. Write down 𝑭!𝟏(𝒚/𝑨) for yourself so you can write the algorithm for 
later use. 
(Behind this pdf there is a stochastic process of multiplicative nature reminiscent of 
the one in Assignment 1, Problem 2 c), but in what follows we just directly simulate 
the resulting distribution by the inverse distribution method. This serves the same 
purpose, namely, it generates simulated “data”, something one often needs to do.) 

 
Generate data of 1000 points. (This is the scarce data part – in this case, explode 
something to get fragments once, and that’s it.)  Use the scaled 𝐹!&(𝑦/𝐴), where 𝐴 =
200000, to simulate the distribution. For numerical reasons, draw 𝑦 from 𝑈(0, 𝐵], where 
𝐵 < 𝐴.	Set  𝐵 = 190000. This sufficiently covers the scaled range (0, 200000]. (The 
numerical values of 𝐴 and 𝐵 have no deeper meaning here. They just serve the purpose of 
setting a useful range for sampling. There is a numerical reason for setting 𝐵 < 𝐴.) If you 
can do the sampling equivalently to what is described above without resorting to scaling, 
that is just as well. 
In what follows, generate the bins and plot the midpoints as shown on the last page of 
Lecture 2. Use e.g. hist-command in matplotlib for histograms. For midpoint plots, you can 
write your own bit of code – or use a library function if there is one. Use 30 bins. Choose 
ranges for the axis appropriately so that data can be seen.  
b) (w = 2) Do linear binning to view the pdf of the generated data. Plot the binned data 

as a histogram of the bins in linear coordinates. Then plot the binned data as a 
histogram of the bins in logarithmic coordinates. In all plots include also the line 
𝒙!𝟑 𝟐⁄  possibly multiplied by an appropriate coefficient for the line to “sweep” close to 
the pdf (this is to make checking in peergrade easier). 

c) (w = 2) Determine the midpoints of the bins and plot the linearly binned data values 
at these midpoints including the line 𝒙!𝟑 𝟐⁄  in logarithmic coordinates, possibly 
multiplied by an appropriate coefficient for the line to “sweep” close to the pdf. 

d) (w = 2) Do logarithmic binning of the pdf. Plot the binned data as midpoints of the 
bins in logarithmic coordinates including the line 𝒙!𝟑 𝟐⁄  possibly multiplied by an 
appropriate coefficient for the line to “sweep” close to the pdf. 

e) (w = 1) (The advantage of logarithmic over linear coordinates is obvious. It 
should also be obvious that midpoint plots are superior to histograms for 
discerning functional forms.) Looking at your binned plots in c) and d), what did 
you gain by doing logarithmic instead of linear binning? (2 – 3 advantages 
expected.) 

f) (w < 1) One could try to simulate the pdf by rejection method. (You don’t need to 
do the simulation.) Would this be slower or faster than the inverse distribution 
method used here? Justify your answer. 
 

  
 

 


