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These lecture notes are written for a research M.Sc. course in microe-
conomic theory covering the theory of individual choice. They are meant
to complement the course textbook Microeconomic Theory by Mas-Colell,
Whinston and Green, and the material presented in the lectures. Special
thanks to Mikael Mäkimattila for useful comments on a previous version.

Introduction

The four parts in the research M.Sc. sequence in microeconomic theory
at Helsinki GSE cover: Decision Theory (Part I), Welfare Economics and
Competitive Markets (Part II), Game Theory (Part III) and Economics of
Information (Part IV). At a very general level, the aim of Part I is to intro-
duce formal models of individual decision making. This means that the
course has two goals: it gives the students a first look at decision theoretic
models and one goal is to present a variety of substantive economic mod-
els. The second goal is to introduce students to formal arguments. This
explains why the notes may seem overly pedantic at times.

Key concepts in this course are choice rules and preference relations on
various domains, utility representations of preference relations, and im-
plications of utility maximization in different contexts. Part II analyzes
collective choice problems (with multiple economic agents) and market
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models of resource allocation. Part III extends the analysis to cover strate-
gic aspects, and Part IV concentrates on models of imperfect and incom-
plete information.

These lecture notes are organized as follows:

1. Rational Choice

(a) Choice Rules: Coherent Choice and Independence of Irrelevant
Alternatives

(b) Preferences: Revealed Preference from Coherent Choice Rules
and Choice Rules from Rational Reference Relations

(c) Utility Representations: Real-Valued Functions Representing Pref-
erences

2. Revealed Preference

(a) Classical Consumer Choice via Revealed Preference

(b) Firm’s Problem via Revealed Profit

3. Maximizing a Numerical Objective Function

(a) Continuous Utility Representation and Choice from Budget Sets

(b) KKT Conditions for Utility and Profit Maximization

(c) Comparative Statics of Optimal Choice

(d) Value Functions and Envelope Theorem

4. Duality in Consumer and Firm Problems

(a) Expenditure Minimization, Slutsky Equation, and Integrability

(b) Cost Function, Shephard’s Lemma, Hotelling’s Lemma

5. Choice Under Uncertainty

(a) Domain of Choice: Lotteries
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(b) Expected Utility Theorem

(c) Monetary Payoffs: Risk Aversion and Comparison of Risks

(d) Risk and Time

6. Advanced Topics:

(a) Probability Weighting, Rank-Dependent Utility

(b) Behavioral Theories: Time-Inconsistent Preferences, Reference-
Dependent Utility

(c) Menus of Lotteries: Preference for Flexibility, Temptation

(d) Stochastic Choice

I have included in some sections material that goes beyond the scope of
this course in order to help the interested student to get a broader picture
of the current state of choice and decision theory. Obviously this course
cannot teach the advanced topics properly, and the idea is to give a flavor
of the questions analyzed. I also give some suggestions for further read-
ing. These advanced topics are ideal material for a course essay. I have
tried to mark these sections in such a way that it is easy to tell them apart
from the required material .
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1 Rational Choice

A decision maker chooses from a fixed sets of alternatives. For example,
the choice could be over different locations for a weekend holiday in Octo-
ber. One set of alternatives could be: {Barcelona, Rome, London, Paris}. If
we present this set of options to the agent, we will observe a single choice
from the set.

Different decision makers will choose differently from this set, but we
would not conclude that some of the agents are inconsistent or irrational.
They are just different. In order to judge the consistency of a decision
maker, we must observe her choices in a range of different decision prob-
lems.

The objective of this first part of the course is to give an introduction to
various ways of thinking about rational choice. The first approach, choice-
based theory relies only on observed choices made from different sets of
alternatives. The second approach, preference-based theory assumes that
choice behavior arises from pairwise comparisons between alternatives.
The third approach, utility-based theory assumes that the decision maker
has a numerical criterion that she can use in comparing possible choices.

Most economists would agree that the choice-based approach is the
most primitive one. In that approach, the analyst does not impose any
structure to unobservable motives as in the preference-based approach
and the utility-based approach. The purpose of this first part of the course
is to convince you that under reasonable assumptions on consistency or
coherence of choice behavior, these three approaches result in remarkably
similar analysis.

In undergraduate studies (in intermediate microeconomics and math-
ematics for economists), consumer theory is sometimes presented as fol-
lows: specify a utility function for the decision maker and use constrained
optimization to derive the resulting demand behavior. If you think about
this, it is a bit funny way to proceed. Are we supposed to test this with all
possible utility functions?
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The approach in this course asks: What can we say about coherent or
rational choice behavior in general. What are the empirical patterns that
falsify our model of choice? From this point of view, you can ask if de-
mand behavior of the form where a constant income share is spent on
each good is compatible with our notion of coherence. We will see that
one way of answering this question is by showing that such demand be-
havior satisfies the sufficient conditions for rationalizability by preference
maximization. In fact (as you probably know from Intermediate Microe-
conomics), these demands result from the maximization of Cobb-Douglas
-preferences. A key goal in this course is the development of criteria based
on observable behavior that allow us to determine when choices are made
in a coherent manner.

1.1 Coherent Choice Functions

1.1.1 Single-Valued Choice Functions

We start with a domain of alternatives that could conceivably be available
for the economic agent. We denote this set by X . A choice problem is any
nonempty subset A ⊂ X . A choice function is a function c : 2X \ ∅ → A,1

and we denote the choice from set A by c(A) ∈ A.2

How should we think of consistent choice? Suppose we know that
c(A) = a, i.e. that option a was chosen from a set of alternatives A. Sup-
pose that the decision maker is presented with a subset of the original
options B ⊂ A. Since all the options contained in B were already avail-
able when choosing from A, and since a was chosen from that larger set,
we might expect that if a ∈ B, then c(B) = a. This is formalized in the

1The notation in these notes is as follows: f : X → Y denotes a function that has the
set X as its domain, and Y as its codomain. We denote the set of all subsets of X by 2X ,
and therefore 2X \ ∅ is the set of all non-empty subsets of X

2Notice that we are restricting choice rules to be single-valued. We consider in the
next subsubsection choice correspondences where we allow for c(A) ⊂ A, with c(A) ̸= ∅ for
all non-empty A ⊂ X .
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following definition attributed variously to Arrow, Chernoff and Radner
& Marschak (and also known as Sen’s α):

Definition 1.1 (Independence of Irrelevant Alternatives, IIA). If c(A) = a,
and a ∈ B ⊂ A, then c(B) = a.

This condition simply requires that by deleting irrelevant alternatives,
i.e. elements not chosen, the choice amongst remaining alternatives will
not change. In the context of our original example, if Barcelona is chosen
from the set {Barcelona, Rome, London, Paris}, then Barcelona should be
the choice from the set {Barcelona, London, Paris} as well. This sounds
like an innocent enough requirement, and IIA is the main assumption for
rational choice functions that we impose. A choice function satisfying IIA
is often called coherent, and the first part of this course is devoted to the
study of coherence choice functions. 3.

1.1.2 Çhoice Correspondences

Suppose next that c(A) can be any non-empty subset of A. We call such
c(A) choice correspondences. The interpretation of this case is that the de-
cision maker could have chosen any of the elements in c(A). We will see
that when interpreting choice through the lens of a decision maker’s pref-
erences, it is natural to allow such set-valued choices.

In this setting, Sen’s α takes a slightly different form to account for the
possibility of multi-valued choice sets:

Definition 1.2. A Choice correspondence c(A) satisfies Sen’s α if a ∈ B ⊂
A and a ∈ c(A) implies a ∈ c(B).

3There are numerous famous examples where IIA fails in experiments. Notable ex-
amples include: framing effects (different choices depending on different descriptions of
the same alternatives lead to different choices), and decoy effects(the whole set of alterna-
tives affects comparisons between alternatives a ∈ A and b ∈ A). Osborne and Rubinstein
Subsection 2.6 discuss such instances
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For choice correspondences, another assumption is made to describe
coherent choices. It is called Sen’s β:

Definition 1.3 (Sen’s β). If a, b ∈ c(B), B ⊂ A, and a ∈ c(A), then b ∈ c(A).

Sen’s α is a restriction on choice behavior when contracting the set of
alternatives. Sen’s β puts conditions on an expanding choice set. I note
here that there is an equivalent way of stating Sen’s α and β (and this will
be useful later).

Definition 1.4 (WARP). A choice correspondence satisfies weak axiom of
revealed preference if a, b ∈ A∩B and a ∈ c(A) and b ∈ c(B) implies a ∈ c(B).

Exercise 1.5. Prove that c satisfies WARP if and only if it satisfies Sen’s α
and Sen’s β.

Let me end this subsection with a comment on connections. Stochastic
choice theory could be thought as a special case of choice correspondences.
This theory analyzes probabilistic choice from a set of alternatives, in par-
ticular the probability of choosing alternative a ∈ A denoted by ρ(a,A) as
a function of the choice set A. This literature has connections to empirical
models of discrete choice (as in industrial organization or structural labor
economics). The book by Tomasz Strzalecki on the syllabus is an excellent
source on this topic, and I also include a brief introduction to stochastic
choice in the last section of these notes.

1.2 Rational Preferences

An alternative way to think about choice is via pairwise comparisons. For
this, we assume that our decision maker can compare any x, y ∈ X . By
this we mean that there is a binary relation ⪰ on X . The interpretation of ⪰
is as follows: If x ⪰ y, then x ∈ X is considered at least as good as y ∈ X

Definition 1.6 (Properties of Binary Relations). The binary relation ⪰ is
called
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1. Complete if ∀ x, y ∈ X, x ⪰ y or y ⪰ x or both.

2. Transitive if ∀ x, y, z ∈ X, x ⪰ y and y ⪰ z =⇒ x ⪰ z.

3. Reflexive if ∀ x ∈ X, x ⪰ x.

4. Antisymmetric if ∀ x, y ∈ X, x ⪰ y and y ⪰ x =⇒ x = y.

Exercise 1.7. Determine which of the above properties hold for ≥ on R
and for ≥ on Rn. Is any of the Properties implied by other properties on
the list?

A binary complete and transitive binary relation is called a weak order.
In microeconomics, we identify weak orders with rational preferences.

Definition 1.8. A binary relation ⪰ is called a rational preference relation if
it is complete and transitive.

From a rational preference relation ⪰, we can derive two other binary
relations. We say that x is strictly preferred to y if x ⪰ y and ¬(y ⪰ x) and
write x ≻ y. We say that x is indifferent to y if x ⪰ y and y ⪰ x and write
x ∼ y. I list below a few standard exercises that you may want to try in
order to familiarize yourself with typical properties of binary relations.

Exercise 1.9. Show that if ⪰ is a rational preference relation, then ≻ (de-
rived from ⪰ as above) is:

1. Asymmetric: If x ≻ y, then ¬(y ≻ x).

2. Negatively transitive: If ¬(x ≻ y) and ¬(y ≻ z), then ¬(x ≻ z).

Exercise 1.10. Show that if ⪰ is a rational preference relation, then ∼ (de-
rived from ⪰ as above) is an equivalence relation, i.e. it is:

1. Transitive.

2. Reflexive.
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3. Symmetric: ∀ x, y ∈ X , if x ∼ y, then y ∼ x.

Exercise 1.11. Show conversely that if ≻ is asymmetric and negatively
transitive, then ⪰ derived from ≻ by:

x ⪰ y ⇐⇒ ¬(y ≻ x),

is a rational preference relation.

If transitivity is violated, you can get cyclic preferences of the form
a ≻ b ≻ c ≻ a. Which is the most preferred alternative in this case?
Cyclical preferences of this type could be exploited in a money pump as
follows. Suppose the decision maker has possession of alternative a. Offer
her the chance to switch to c for a small monetary amount. Then to b

for a small monetary amount, then back to a again for a small monetary
amount. At this point, she is back to the starting position, only poorer by
three small amounts. Continue the process until the decision maker has
no money left.

To see how cyclical preferences might arise, consider the following ex-
ample.

Example 1.12. Suppose that you compare prospective apartments that you
might rent based on three qualities: size, price, distance to Economicum.
It is easy to rank the choices separately for each quality: bigger is better,
cheaper is better, closer to Eco is better. Say each alternative is then a triple
a = (as, ap, ad) and similar for b. When you aggregate the preference over
qualities into a preference over the alternatives, you say a ≻ b if and only
if a is better than b on at least two qualities. This procedure can easily lead
to violations of transitivity.

Exercise 1.13. A non-standard die is one where the numbers on each face
are between 1 and 6 and sum up to 21. LetA denote the set of all such dice.
Say that die a wins over die b in a fair roll of the dice if the number on the
upward pointing face of a is larger than on the face of b. Define preference
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by a ≻ b if and only if Pr{a wins} > Pr{b wins}. Show by an example that
this preference relation is not transitive. Is there any a such that ¬(b ≻ a)

for all b ∈ A.

1.3 Connecting Choice and Preferences

In this subsection, I connect observable choices to a psychological moti-
vation, the preferences. Let’s do this first in the simplest possible setting
where we look at choice functions and strict rational preferences defined
on a finite domain X .4

1.3.1 Preferences and Choice Functions on a Finite Domain

The idea is simple: you should choose alternative a only if there are no
alternatives b available such that b ≻ a. Similarly, if you choose a when b

is available, it makes sense to say that you think a is at least as good as b.
Despite the apparent simplicity of this construction, it leads to one of

the most fundamental ideas in microeconomic theory: we will never know
the true motives of decision makers. We can make judgments on their wel-
fare etc. only to the extent that we can learn from their choices. Towards
this goal, we will see if we can build a rational preference relationship that
rationalizes the choices arising from a consistent choice function.

Let’s start with the choice function c(A) defined on all non-empty sub-
sets of X . If c({a, b}) = a, then we say that a is revealed preferred to all b, and
we denote this by a ⪰c b. Our goal is to show that if c satisfies IIA, then ⪰c

is a rational preference relation.

Proposition 1.14. If c satisfies IIA on domain X , then the revealed prefer-
ence relation ⪰c is an antisymmetric rational preference relation.

4This is equivalent to adding the requirement that the rational preference relation is
antisymmetric.
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Proof. To show the completeness of ⪰c, we only need to note that since c is
defined on all nonempty A ⊂ X , we have c({a, b}) = a or c({a, b}) = b, i.e.
either a ⪰c b or b ⪰c a.

To show transitivity of ⪰c, we assume that a ⪰c b and b ⪰c d for some
a, b, d ∈ A. We need to show that whenever c satisfies IIA, we have a ⪰c d.

By definition of ⪰c, we have c({a, b}) = a, and c({b, d}) = b. Consider
c({a, b, d}). If c({a, b, d}) = d, then c({b, d}) = b violates IIA. If c({a, b, d}) =
b, then c({a, b}) = a violates IIA. Hence we conclude c({a, b, d}) = a and
by IIA this implies that c({a, d}) = a, i.e. that a ⪰c d.

To show antisymmetry, if a ⪰c b and b ⪰c a, then a = c({a, b}) = b, i.e.
a = b since c is single-valued.

The other direction is in fact quite simple. If we have a finite X , and if
preferences are rational and antisymmetric, then we can find for allA ⊂ X

a unique element a ∈ A such that ∀ b ̸= a, b ∈ A, a ⪰ b. We call such an a
the ⪰-maximal element in A and denote it by c⪰(A).

Lemma 1.15. If X is finite, and ⪰ is a rational and antisymmetric prefer-
ence relation, then c⪰(A) exists.

Proof. We need to show that for all A, there is an a′ ∈ A such that a′ ⪰ a

for all a ∈ A.
Since A is finite, we can order it as A = {a1, ..., an} for some n <∞. Set

a′1 = a1.
To get a′k for k > 1, compare a′k−1 and ak. If a′k−1 ⪰ ak, set a′k = a′k−1.

If ak ⪰ a′k−1, set a′k = ak. By antisymmetry, only one of these cases is true.
We claim that a′n ⪰ a for all a ∈ A.

To see this, pick any ak ∈ A. Since a′k ⪰ a′k−1 for all k > 1 and a′k ⪰ ak,
we have that a′n ⪰ ak (by n > k and by the transitivity of ⪰).

To see uniqueness, suppose that for some a, a′ ∈ A, both a ⪰ b for all
b ∈ A and a′ ⪰ b for all b ∈ A. Then antisymmetry implies that a = a′, i.e.
the ⪰-maximal element is unique.
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Can you find an example of a set X (not finite) with a complete, tran-
sitive and antisymmetric binary relation on it such that no ⪰-maximal el-
ement exists? Apart from this existence problem, there is really no reason
to insist on finiteX . But note how we used the fact that the choice function
was defined on all subsets of X .

Proposition 1.16. If ⪰ is a rational and antisymmetric preference relation,
then c⪰(A) is a choice function that satisfies IIA.

Proof. By the previous lemma, c⪰(A) is non-empty and single-valued for
all non-empty A ⊂ X . Hence we only need to show that it satisfies IIA. If
c⪰(A) ∈ B ⊂ A, then c⪰(A) ⪰ b for all b ∈ B and therefore c⪰(A) = c⪰(B)

and c⪰(A) satisfies IIA.

The following exercise completes the story. If we start with a choice
function and derive its revealed preference relation and finally derive the
choice function induced by the revealed preference relation, we get back
the original choice function.

Exercise 1.17. Show that if c(A) satisfies IIA, then c⪰c(A) = c(A).

I should mention that there is some debate amongst economists re-
garding the status of preference relations. Some view these as a conve-
nient mathematical representations for coherent choice functions. Others
believe that preferences are substantive, i.e. they describe true psycholog-
ical deliberations that guide decision makers in choice situations. In these
lectures, we do not need to take a stance on this, but e.g. the handbook
chapter by Robson and Samuelson (2010) on the syllabus contains a good
discussion around this topic.

1.3.2 Choice Correspondences and Preferences

The material in this section allows for a direct connection to classical con-
sumer theory. The details are slightly more cumbersome, but the main
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idea is the same: define a revealed preference relation and then show that
the choice induced by this revealed preference relation coincides with the
original choice correspondence.

We will now drop the requirement of antisymmetry of preference rela-
tions to cope with multi-valued choice sets. When we drop antisymmetry,
we allow for indifference between different alternatives. With this change,
there is at least a possibility that the set of ⪰-maximal elements from A

might coincide with the value of the choice correspondence at A.
In order to avoid problems with existence, we assume that the choice

function is defined on all finite (non-empty) subsets ofX .5 It turns out that
the weak axiom of revealed preference is exactly the condition needed to
connect the two approaches for finite choice sets.

Definition 1.18 (WARP). A choice correspondence satisfies weak axiom of
revealed preference if a, b ∈ A∩B and a ∈ c(A) and b ∈ c(B) implies a ∈ c(B).

Let’s define the choice function induced by a rational preference rela-
tion.

Definition 1.19. Let ⪰ be a rational preference relation. The choice corre-
spondence c⪰(A) defined by a ∈ c⪰(A) ⇐⇒ (∀ a′ ∈ A, a ⪰ a′) is called
the choice correspondence induced by ⪰.

We have the following proposition:

Proposition 1.20. The following statements are equivalent:

1. The choice correspondence c satisfies Sen’s α and Sen’s β.

2. The choice correspondence c satisfies WARP.

3. There is a rational preference relation ⪰ such that c⪰(A) = c(A) for
all finite A ∈ X .

5If we restrict to finite X , we do not need to worry about this. It is important that we
assume that c is defined on a sufficiently rich class of subsets of X .
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Proof. You have already proved that 1. =⇒ 2. in Exercise 1.5.
To prove that 2. =⇒ 3., assume that c(A) satisfies WARP and let

a ⪰c b ⇐⇒ a ∈ c(a, b). Completeness follows from non-emptyness of
c(A) for all A. Transitivity of ⪰c follows if for all a, b, c ∈ A, we have:
a ∈ c({a, b}), and b ∈ c({b, c}) imply a ∈ c({a, c}). Consider c({a, b, c}).
There are three cases:

i) If a ∈ c({a, b, c}), then a ∈ c({a, c}) by Sen’s α.
ii) If b ∈ c({a, b, c}), then b ∈ c({a, b}) by Sen’s α, and thus a ∈ c({a, b, c})

by Sen’s β, and we are back to i).
iii) If c ∈ c({a, b, c}), then c ∈ c({a, c}) by Sen’s α, and thus b ∈ c({a, b, c})

by Sen’s β, and we are back to case ii).
Hence ⪰c is rational.
We have by definition: a ∈ c(A) ⇐⇒ a ⪰c b for allb ∈ A. If we define

c⪰c(A) = {a ∈ A|¬(b ≻c a for some b ∈ A)}, we have a ∈ c(A) ⇐⇒ a ∈
c⪰c(A).

I leave it as an exercise to show that 3. =⇒ 1.

1.3.3 Summary For Now

Do not get lost in the details. The main point thus far is: a reasonable
assumption on the observable side, i.e. IIA on choice functions, is ob-
servationally indistinguishable from a reasonable assumption on the un-
observable side, i.e. a rational preference relation. In a sense, these two
approaches shed light on what consistent choice might mean and if you
accept one side, you accept the other (and if you reject one side, you re-
ject the other). I will reserve further comments on the on the assumptions
made until the end of this section.
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1.4 Utility Representations

Let’s connect all of this next to the main workhorse from Intermediate Mi-
croeconomics: Utility Maximization. What could be the most straightfor-
ward way to connect choice to utility maximization? Maybe we can assign
numerical values to the alternatives and then we would just pick from any
A the alternative with the highest numerical value.

Definition 1.21. We say that a utility function u : X → R represents the
rational preference relation ⪰ on X if for all x, x′ ∈ X we have u(x) ≥
u(x′) ⇐⇒ x ⪰ x′.

In the case of rational preference relationships on a finite domain X ,
this is very easy. Define a utility u : X → R by:

u(x) = #{y ∈ X|x ⪰ y}.

Exercise 1.22. Show that with this definition of u, x ⪰ x′ ⇐⇒ u(x) ≥
u(x′).

An important observation is that since the utility function is based on
preferences, and preferences are ordinal in nature (there is no measuring
stick for how much one prefers x over y), utility functions also contain only
ordinal information. This simply says that the numerical values of the util-
ity function are irrelevant, the only economically meaningful information
relates to the relative ranking of alternatives. In fact, we have:

Proposition 1.23. If u : X → R represents ⪰ and v : R → R is strictly
increasing, then v(u) : X → R also represents ⪰.

Proof. If v is a strictly increasing function, then x ≥ x′ ⇐⇒ v(x) ≥ v(x′).
So if u represents ⪰, then x ⪰ x′ ⇐⇒ u(x) ≥ u(x′) ⇐⇒ v(u(x)) ≥
v(u(x′)).

This is why for vectors (x, y) ∈ X the utility function given by u(x, y) =
e
√
x+2y represents the same preferences as v(x, y) = x + 2y. You will have
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seen this with e.g. Cobb-Douglas preferences: u(x, y) = xαy1−α represents
the same preferences as v(x, y) = α lnx+ (1− α) ln y.

The following is for those interested in generalizing the mathematical
structure to cover the types of applications that will be covered in this
class, in particular classical consumer theory.6

If X is countably infinite, let X = {x1, x2, ...} be an enumeration of X .
Then let:

u(x) =
∑
i:x⪰xi

1

2i
.

If X is uncountably infinite, but has an order dense countable subset
Y = {y1, y2, ...} ⊂ X , (i.e. for all x, x′ ∈ X such that x ≻ x′, there is an
y ∈ Y such that x ⪰ y ⪰ x′), then this is modified to:

u(x) =
∑
i:x⪰yi

1

2i
.

All of the cases that we will encounter in this course have order dense
subsets. You will find a counterexample of rational preferences not repre-
sentable by a utility function by Googling ’Lexicographic Preferences’.

We will return to the representation of preferences by continuous util-
ity functions later in the course, but with more assumptions on the prefer-
ences.

1.5 Assessing Rational Choice

Let me add a few words on interpreting the previous findings. We may
ask: ’What is the significance of finding a preference (and hence a utility)
rationalization to a particular choice behavior?’ In particular: suppose that
c satisfies IIA in the simplest case without indifferences. Do we conclude
that the decision maker is a utility maximizer?

6This is not important for understanding the main economic content and not used in
the rest of these notes.
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To my taste, the best thought experiment for this question is the follow-
ing. Suppose that the alternatives inA are presented to the decision maker
in a fixed order {a1, a2, ...aK}. We say that the decision maker is satisficing
if she has in mind an outside option a∗ ∈ A such that she will accept the
first alternative ak ⪰ a∗ and she will choose aK if a∗ ≻ ak for all k ≤ K.

Clearly such a process does not fit our traditional view of rational de-
cision making. A satisficing decision maker is content with anything that
is good enough and does not seek for the best possible alternative. Nev-
ertheless the choice function for this procedure satisfies IIA and therefore
has a rationalization in terms of a rational antisymmetric rational prefer-
ence relation.

The key take-away from this example and others like it is that ratio-
nalizability by rational preference relations does not mean that the mental
process behind the choices conforms to our idea of typical rational deci-
sion making by a careful comparison of the available alternatives. It just
means that we cannot tell the such satisficing behavior apart from behav-
ior induced by rational preferences. Subsection 2.2 in Osborne and Rubin-
stein discusses various decision procedures and their relation to rational
choice.

In this course, the main platform for evaluating the development in
the lectures is in the Problem Sets. In general, the best way of testing your
understanding of the material in the lectures is by doing the Problems and
Exercises in Osborne and Rubinstein, MWG and in Rubinstein. Some of
the problems are challenging so do not despair if you have difficulties with
them.
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2 Revealed Preference

Up to this point, our discussion of choice and preferences has been com-
pletely abstract and independent of any economic context. In this section,
I connect the ideas of the previous chapter to the two main topics of in-
termediate microeconomics: consumers’ and firms’ choices in competitive
markets.

2.1 Classical Consumer Theory via Revealed Preference

2.1.1 WARP for Budget Sets

Classical consumer theory considers decision makers with a fixed income
w and L different consumption goods that can be purchased in varying
quantities at fixed per unit prices p = (p1, ..., pL) ∈ RL

++ (i.e. pl > 0 for all
l ∈ {1, ..., L}). In this case, we can identify the set of alternatives as the
budget set B(p, w):

B(p, w) = {x ∈ RL|p · x =
L∑
l=1

plxl ≤ w}.

Notice that here we have infinite sets of alternatives, but we assume
that the consumer has a choice function, i.e. a unique choice from each
possible budget set. In this setting, we write weak axiom of revealed pref-
erence as:

Assumption 2.1 (WARP’ for Budget Sets). If x,x′ ∈ B(p, w) ∩ B(p′, w′)

and x ∈ c(B(p, w)) and x′ ∈ c(B(p′, w′)), then x ∈ c(B(p′, w′)), i.e. x = x′.

The equality of x and x′ follows from the fact that choice is assumed
to be single-valued. An alternative way of stating this is in terms of the
budget outlays directly. If we write the choice from budget set B(p, w) as
x(p, w), we can rewrite the axiom as follows:

Assumption 2.2 (WARP for Budget Sets). If x(p, w) ̸= x(p′, w′), and p′ ·
x(p, w) ≤ w′, then p · x(p′, w′) > w.
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x1

x2

x(p′, w′)

x(p, w)

B(p, w) B(p′, w′)

Figure 1: WARP i)

x1

x2

x(p′, w′)

x(p, w)

B(p, w) B(p′, w′)

Figure 2: WARP ii)

Definition 2.3. If p · y ≤ p · x(p, w), we say that x(p, w) is directly revealed
preferred to y.

It is useful to draw illustrating pictures at this point for x = (x1, x2) ∈
R2.

Exercise 2.4. Determine which of the figures WARP i)-iii) are compatible
with WARP.
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x1

x2

x(p, w)

x(p′, w′)

B(p, w) B(p′, w′)

Figure 3: WARP iii)

2.1.2 WARP and the Compensated Law of Demand

WARP has surprisingly deep implications for consumer behavior. We start
by observing the effect of price changes on choice that satisfies WARP. You
should recall from intermediate microeconomics that for a utility maxi-
mizing consumer, the effect of any price change on consumption can be
decomposed into a substitution effect and an income effect. In this decon-
position, the substitution effect has a clear sign: if the price of a good rises,
then substitution effect leads to a reduced demand. This same result holds
for any demand satisfying WARP.

In order to get this result, we define an income compensation for a price
change. The idea is simple: as prices change to say p′, the outlay needed
to purchase x(p, w) changes. Let’s adjust the decision maker’s income to
a new level w′ so that p′ · x(p, w) = w′.

Proposition 2.5. WARP implies the compensated law of demand, i.e. for
w′ = p′ · x(p, w), we have:

(p′ − p)(x(p′, w′)− x(p, w)) ≤ 0.

In particular if only one price, say pi changes, then (p′i − pi)(x
′
i − xi) ≤ 0.

Proof. If x(p′, w′) = x(p, w), the claim is trivially true so we assume that
x(p′, w′) ̸= x(p, w) Since x(p′, w′) is feasible, we have p′ · x(p′, w′) ≤ w′.
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By the definition of compensation, p′ · x(p, w) = w′ so that both x(p, w)

and x(p′, w′) are feasible at the compensated budget set. Hence x(p′, w′) is
revealed preferred to x(p, w). Since x(p, w) satisfies WARP, it must be the
case that p · x(p′, w′) > p · x(p, w), and the claim follows.

Let’s make some further assumptions. Let’s assume that x(p, w) sat-
isfies WARP and that the choice vector is a differentiable function of the
prices and income. We have the compensated law of demand for infinites-
imal compensated price changes (dp, dw), where dw = x · dp:

dp · dx ≤ 0.

Write out the change in choice x from the price and the income change:

dx = Dpx(p, w)dp+Dwx(p, w)dw.

= (Dpx(p, w) +Dwx(p, w)x(p, w)
⊤)dp.

So we have:

dp · (Dpx(p, w) +Dwx(p, w)x(p, w)
⊤)dp ≤ 0.

The matrix Dpx(p, w)+Dwx(p, w)x(p, w)
⊤ is called the Slutsky matrix

of the demand function x(p, w). If you are not used to matrix notation with
derivatives, it is a good exercise to write the above expression in terms of
partial derivatives.

The result above tells us that the Slutsky matrix is negative semi-definite.
We will see much later in this course that any demand function that is lin-
early homogenous in prices and income, uses the entire budget, and has
a negative semi-definite and symmetric Slutsky matrix can be derived as
a solution to a utility maximization problem. WARP does not imply sym-
metry of the Slutsky matrix, and this symmetry is not at all an obvious
property that we would expect from well-behaved demands.
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2.1.3 Loose Ends

I have derived some implications of WARP, but I am not aiming at a com-
prehensive treatment here. Let me point out some useful facts.

Result 1. Compensated law of demand (CLD) for all compensated price
changes (∆p,∆w) implies WARP. The easiest way to get to this result is
by considering the contrapositive: If WARP does not hold, then there is a
compensated price change where CLD does not hold.

Exercise 2.6. Prove the above result.

We say that x is directly revealed preferred to x′ if x is the choice at
(p, w) and p · x′ ≤ w, and we write x ⪰R0 x′. We say that x is revealed
preferred to x′ and write x ⪰R x′ if there is a sequence of choices x1, ...,xn

such that x ⪰R0 x1 ⪰R0 ... ⪰R0 xn ⪰R0 x′. (We say that ⪰R is the transi-
tive closure of ⪰R0). We write x ≻R0 x′ for x is directly revealed strictly
preferred to x′ if x is the choice at (p, w) and p · x′ < w. 7

Definition 2.7. We say that a choice function x(p, w) satisfies strong axiom
of revealed preference, SARP if x ⪰R x′ implies ¬(x′ ⪰R0 x). A choice corre-
spondence x(p, w) satisfies generalized axiom of revealed preference, GARP if
x ⪰R x′ implies ¬(x′ ≻R0 x).

Exercise 2.8. Show that the following demand observations satisfy WARP,
but not SARP (or GARP)

p1 = (1, 1, 2), p2 = (2, 1, 1),p3 = (1, 2, 1 + ϵ),

x(p1, 1) = (1, 0, 0),x(p2, 1) = (0, 1, 0),x(p3, 1 + ϵ) = (0, 0, 1).

Result 2 (Afriat’s Theorem). If the demand function x(p, w) satisfies WARP
and L = 2, then there is a utility function such that x(p, w) is the solution

7The idea here is that if more is better, then x′ + ϵ1, with 1 = (1, ..., 1) is strictly
preferred to x′ and still feasible and thus x is directly revealed preferred to x′ + ϵ1.
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to a utility maximization problem in B(p, w). If a choice function satisfies
SARP and if a choice correspondence satisfies GARP, then they arise as
solutions to utility maximization problems for some quasiconcave utility
function.

Reny (2015) presents proofs and advanced discussions of these points.
Varian (1982) shows how to use a finite set of observations {(pi, wi,xi)}ni=1

to sketch the possible shapes of indifference curves for the decision maker.

2.2 Revealed Profitability

A firm uses inputs to produce outputs. In the theory of competitive firm
behavior, we assume that the firm has no effect on market prices or at least
takes input and output prices as exogenously given for its decisions.

2.2.1 Production Set

There are L goods in the economy. The goods can be used as inputs in
the production process and some goods can be produced as output by the
firm. The set of available alternatives for a competitive firm is called the
production set and denoted by Y ⊂ RL. It is a list of technologically feasible
vectors y ∈ Y . We adopt the convention that inputs in a production vector
are represented by negative coordinates and outputs by positive coordi-
nates. We will give more structure to the production set in Sections 3 and
4 when we talk about about profit maximizing competitive firms.

In classical firm theory, its objective is to maximize profit. For a com-
petitive firm, profit is simply the revenue from output net of input costs. If
both input and output prices are fixed and given by a price vector p ∈ RL

+,
then the profit π(y, p) from production vector y ∈ Y is simply:

π(y) = p · y =
L∑
l=1

plyl.
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Our perspective is now somewhat different to the consumer choice. We
observe the firm’s choices of inputs and outputs at various prices. Denote
this collection of observed behavior by {(pi,yi)}ni=1. As outside observers,
we do not know what the production set Y looks like, but we can estimate
it based on the observations.

If yi is chosen at price vector pi, we know that Y ⊂ {y|pi · y ≤ pi · yi.
Can you see why this is the case? Obviously this can be done for all i ∈
{1, 2, ..., n}. This means that you have to take the intersection of the half-
spaces below by the iso-profit hyperplanes that go through the observed
production vectors.

Exercise 2.9. Assume that y1 is an input and y2 is an output. Find the
region containing Y if the firm is a profit maximizer and has chosen the
following production plans:

{yi} = {(−2, 5), (−1, 3), (−5, 7)} at prices {pi} = {(5, 2), (3, 2), (1, 1)}.

2.2.2 The Law of Supply

We end this section with a comparative statics result. In our dataset {(pi,yi)}ni=1,
the observed production vector generates maximal profit amongst the ob-
served vectors, i.e. for all l, k:

pk · yk ≥ pk · yl,

pl · yl ≥ pl · yk.

Summing these inequalities, and rearranging terms, we get:

(pk − pl) · (yk − yl) ≥ 0.

This is the Law of Supply for an individual firm. The output quantities
are increasing in own price (and input demands are decreasing in their
price).
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3 Maximizing an Objective Function

We will now make use of the utility representation of choice behavior, and
turn the problem of describing choice behavior into a constrained opti-
mization problem. This is an area where sharp mathematical tools (in-
cluding calculus) yield sharp results.

3.1 Representing Continuous Rational Preferences

Since our domain for choices and preferences is for the most part RL
+, we

define preferences on the positive orthant, i.e. x = (x1, ..., xL) such that
xl ≥ 0 for all l ∈ {1, ..., L}.

Definition 3.1. An upper contour set of a rational preference relation ⪰ at
x ∈ RL is the set:

U(x;⪰) := {x′|x′ ⪰ x}.

A lower contour set of a rational preference relation ⪰ at x ∈ RL is the set:

W(x;⪰) := {x′|x ⪰ x′}.

Since ⪰ is complete, we have U(x;⪰) ∪W(x;⪰) = RL
+

Definition 3.2. A rational preference relation ⪰ is continuous if U(x;⪰)

and W(x;⪰) are closed for all x ∈ RL.

One of the key theorems in mathematical economics, due to Debreu
(1954), shows that all continuous preference relations have a utility repre-
sentation by a continuous utility function. The proof is a bit complicated
and is really an exercise in mathematical analysis rather than economics
so we skip it here. In almost all cases that we cover here (or in any other
economics courses), we can safely assume that preferences are increasing
in the sense that you cannot be hurt by having more of some good. We use
the following notation for vector inequalities:

x ≥ x′ ⇐⇒ xl ≥ x′l for all l ∈ {1, ..., L},
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x > x′ ⇐⇒ xl ≥ x′l for all l ∈ {1, ..., L} and x ̸= x′,

x >> x′ ⇐⇒ xl > x′l for all l ∈ {1, ..., L}.

Definition 3.3. A rational preference relation is monotonic if x ≥ x′ implies
x ⪰ x′. It is strictly monotonic if x > x′ implies x ≻ x′.

With these definitions we can prove

Proposition 3.4. If ⪰ is a continuous strictly increasing preference relation
on RL

+, then there exists a strictly increasing continuous utility function u

on RL representing ⪰.

Proof. Let 1 = (1, 1, ..., 1) ∈ RL. Then A = {α1 = (α, ..., α)} is the diagonal
of RL

+ as α ranges over R+. Consider an arbitrary x ∈ RL
+. Since ⪰ is

complete, α1 ∈ U(x;⪰) ∪W(x;⪰) for all α ∈ R+. Since A is a closed and
connected set and since both U(x;⪰) and W(x;⪰) are closed, there exists
an αx ∈ R+ such that αx1 ∈ U(x;⪰) ∩ W(x;⪰), i.e. αx1 ∼ x. By strict
monotonicity of ⪰, αx is unique. We claim first that u(x) = αx represents
⪰. To see this, consider any x ⪰ x′. We have by construction

αx1 ∼ x ⪰ x′ ∼ αx′1.

By monotonicity,
αx1 ⪰ αx′1 ⇐⇒ αx ≥ αx′ .

Hence by our definition of u, we have x ⪰ x′ ⇐⇒ u(x) ≥ u(x′).
Finally, to see continuity, recall that a function f : RL

+ → R is contin-
uous if and only if its upper and lower contour sets are closed. Since u
represents ⪰, the assumption of continuous preferences guarantees that
both {x′|u(x) ≥ u(x′)} and {x′|u(x′) ≥ u(x)} are closed.

3.1.1 Budget Sets and Walras’ Law

In classical consumer theory, the set of available options for a decision
maker is the same budget set that we saw in the subsection on revealed
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preference. For a strictly positive price vector p = (p1, ..., pL) >> 0, and
strictly positive income w > 0, we write:

B(p, w) = {x ∈ RL
+|p · x =

L∑
l=1

plxl ≤ w}.

Our first observation is that B(p, w) is homogenous of degree zero in
(p, w), i.e. the budget set is unchanged if you multiply all prices and the
income by the same positive number λ.

B(p, w) = B(λp, λw) for all λ > 0.

Since the consumers preferences are defined on x, the optimal choice does
not change as the available set of options is the same. This is sometimes
summarized by the statement that the consumer does not have money
illusion:

x(p, w) = x(λp, λw) for all λ > 0.

Euler’s theorem for homogenous functions then gives:

Proposition 3.5. If a consumer has rational preferences on RL
+, then her

demand function x(p, w) satisfies:

L∑
l=1

pl
∂xk(p, w)

∂pl
+ w

∂xk(p, w)

∂w
= 0 for all k.

Exercise 3.6. Show that the above expression can be written as:

L∑
l=1

ϵlk + ϵwk = 0 for all k,

where ϵlk is the price elasticity of good k with respect to price pl, and ϵwk is
the income elasticity of good k.

Note that B(p, w) is compact, i.e. closed (intersection of closed half-
spaces) and bounded (xl ≤ w

pl
for all l). Weierstrass’ Theorem tells us
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that continuous functions attain their suprema on compact sets. In other
words, the utility maximization problem:

max
x∈B(p,w)

u(x),

or
max

x
u(x)

subject to
L∑
l=1

plxl ≤ w,

is well defined in the sense that it has a non-empty set of solutions. We
summarize this as a theorem.

Theorem 3.7. The problem maxx∈B(p,w) u(x) has a solution x(p, w) called
the Walrasian or Marshallian demand correspondence of the utility maximiza-
tion problem.

The budget constraint p · x ≤ w binds, i.e. is satisfied as an equality if
the consumer has strictly monotonic preferences. The typical formulation
in consumer theory is given in terms of slightly more general locally non-
satiated preferences.

Definition 3.8. The rational preference relation ⪰ is locally non-satiated if
for all x and all ϵ > 0, there is another consumption vector x′ ∈ Bϵ(x) such
that x′ ≻ x.8

Exercise 3.9. Show that if u represents a locally non-satiated rational pref-
erence relation, then p · x = w for all (p, w).

8By Bϵ(x), we denote the open ϵ-ball around x, i.e.

Bϵ(x) =

y ∈ RL|

√√√√ L∑
l=1

(yl − xl)2 < ϵ


.
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This observation goes under the name of Walras’ Law. You will en-
counter it in competitive equilibrium models in Advanced Microeconomics
2. Again, as in the case of no money illusion, this simple observation has
implications for the optimal demand. The following proposition results by
totally differentiating the budget constraint, first with respect to income w,
and then with respect to price pk.

Proposition 3.10 (Engel and Cournot Aggregation).
If p · x(p, w) = w for all (p, w), then we have

1.
∑L

l=1 pl
∂xl(p,w)

∂w
= 1,

2.
∑L

l=1 pl
∂xl(p,w)

∂pk
+ xk(p, w) = 0 for all k.

Exercise 3.11. Show that the above expressions can be written in terms of
elasticities as follows:

L∑
l=1

slϵwl = 1,

L∑
l=1

slϵlk + sk = 0,

where sl := plxl

w
is the expenditure share of good l.

3.1.2 Additional Assumptions on Preferences

You may recall from earlier courses in microeconomics that indifference
curves are normally drawn with a convex to origin shape. With a utility
representation u for rational preferences, we could determine the shape by
investigating the level curves {x ∈ RL

+|u(x) = ū}. If the utility function
is twice differentiable, we could do this via Implicit Function Theorem,
but this is quite cumbersome (just try it!). It is much more convenient to
approach this directly through properties of ⪰.

Definition 3.12. A rational preference relation ⪰ is convex if x ⪰ z, y ⪰ z,
and λ ∈ [0, 1] imply λx + (1 − λ)y ⪰ z. It is strictly convex if x ⪰ z,
x ̸= y ⪰ z, and λ ∈ (0, 1) imply λx+ (1− λ)y ≻ z.
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This may seem like an odd definition but if you look at two vectors x ∼
y, they are located on the same indifference curve. For convex preferences,
any weighted average of such x,y is at least as good as x and y. Strict
convexity requires that all non-trivial weighted averages are strictly better
than x and y. Draw the pictures to see how this looks. If x ⪰ z and y ⪰ z,
then x,y ∈ U(z,⪰). In other words, preferences are convex if all upper
contour sets are convex sets.

Recall from Mathematics for Economists’ (or MathCamp) the definition
of a quasiconcave function:

Definition 3.13. A function f on a convex domain X is quasiconcave if for
all x, y ∈ X and all λ ∈ [0, 1],

f(λx+ (1− λ)y) ≥ min{f(x), f(y)}.

It is strictly quasiconcave if for all x ̸= y ∈ X and all λ ∈ (0, 1),

f(λx+ (1− λ)y) > min{f(x), f(y)}.

Exercise 3.14. Suppose that u represents ⪰. Show that u is (strictly) quasi-
concave if and only if ⪰ is (strictly) convex.

Mathematically the most important reason for assuming strictly con-
vex preferences is that they result in single-valued solutions to the utility
maximization problem.

Proposition 3.15. Suppose ⪰ is a continuous and strictly convex rational
preference relation on a convex setB. Then the set of optimal choices from
B is a singleton (i.e. consists of a single choice).

Proof. Since ⪰ is continuous, it has a continuous utility representation and
Weierstrass’ Theorem guarantees the existence of a b∗ ∈ B such that b∗ ⪰ b

for all b ∈ B.
We prove the claim by contradiction. Assume that b∗∗ ∈ B is another

choice such that b∗∗ ⪰ b for all b ∈ B. SinceB is a convex set, 1
2
b∗+ 1

2
b∗∗ ∈ B.
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By strict convexity of ⪰, we know that 1
2
b∗ + 1

2
b∗∗ ≻ b∗ contradicting the

optimality of b∗. Hence we conclude that there is a single b∗ that dominates
all other choices.

In order to use this result, we must show that the budget set B(p, w) is
convex. If p · x ≤ w and p · x′ ≤ w, then

p · (λx+ (1− λ)x′) ≤ λw + (1− λ)w = w,

and therefore λx+ (1− λ)x′ ∈ B(p, w).

Now we know that under strictly convex preferences, i.e. strictly quasi-
concave utility functions, the optimal demand x(p, w) = argmaxx∈B(p,w) u(x)

is indeed a function.

Exercise 3.16. Show that if u : RL
+ → R is a (strictly) quasiconcave function

and v is a strictly increasing function, then v(u) is a (strictly) quasiconcave
function.

You should already know that this result is true since u and v(u) rep-
resent the same preferences and therefore the shape of the upper contour
sets depends only on the underlying ⪰. Another exercise (familiar from
the MathCamp) shows some sufficient conditions for quasiconcavity:

Exercise 3.17. If u is concave, then it is quasiconcave. By the previous
exercise, this also implies that any strictly increasing function of a concave
function is a quasiconcave function.

3.1.3 Some Details for the Interested

This may be a good time to look up Berge’s Theorem of Maximum in
Appendix M.K.2 of Mas-Colell, Whinston and Green. Since B(p, w) is a
compact valued and continuous correspondence of (p, w) in the interior of
RL+1, and u(x) is continuous, the set of maximizers argmaxx∈B(p,w) u(x)

is a nonempty-valued upper-hemicontinuous correspondence. A single-
valued upper-hemicontinuous correspondence is a continuous function.
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As a result, we see that strictly convex preferences result in a continuous
demand function in for interior (p, w).

Convex preferences result in a convex-valued demand correspondence,
i.e.

x,x′ ∈ argmax
x∈B(p,w)

u(x) =⇒ λx+ (1− λ)x′ ∈ argmax
x∈B(p,w)

u(x) for all λ ∈ [0, 1].

These properties of optimal demands will be useful in Advanced Microe-
conomics 2.

3.2 KKT Conditions for Utility and Profit Maximization

If we assume that the utility function is differentiable, we can make use of
the KKT-conditions for maxima that should be familiar from Mathematics
for Economists and from MathCamp.

3.2.1 Utility maximization problem (UMP)

A consumer allocates her budget of w > 0 to L goods. Her consump-
tion vector is an element of the positive orthant of the L Euclidean space
X = {x ∈ RL

+}. We assume that the consumer has a continuous utility
function u(x) defined on X . Economic scarcity is present through the bud-
get constraint:

p · x ≤ w or
L∑
l=1

plxl ≤ w,

where p = (p1, ..., pL) >> 0 is the vector of strictly positive prices for the
goods. We can write this problem then as

Maximize

u(x1, ..., xL)
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subject to

L∑
l=1

plxl ≤ w,

xl ≥ 0 for all l.

By writing the constraints in the equivalent form:

L∑
l=1

plxl − w ≤ 0,

−xi ≤ 0 for all l,

the problem is in the standard form that we always write for inequality
constrained optimization problems.

Let’s pause to see what we know about this problem already. A so-
lution exists by Weierstrass’ Theorem. If u is strictly increasing (as we
usually assume) and quasiconcave, then the first order Kuhn-Tucker con-
ditions are necessary and sufficient for optimum. In words, whenever we
find a point satisfying the K-T conditions, we have solved the problem.

Let’s turn our attention next to the Lagrangean and the K-T conditions:

L(x, λ) = u(x)− λ0

[
L∑
l=1

plxl − w

]
+

L∑
l=1

λlxl.
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The first-order K-T conditions are:

∂L
∂x

=
∂u(x)

∂xl
− λ0pl + λl = 0 for alll,

λ0

[
L∑
l=1

plxl − w

]
= 0,

λlxl = 0 for all l,
L∑
l=1

plxl − w ≤ 0,

−xl ≤ 0 for all l,

λl ≥ 0 l ∈ {0, 1, ..., L}.

If the utility function has a strictly positive partial derivative for some
xi at the optimum, then the budget constraint must bind and λ0 > 0. This
follows immediately from the first line of the K-T conditions. For the other
inequality constraints, consider the partial derivatives at x ∈ RL

+ with xl →
0 for some l. If

lim
xl→0

∂u(x)

∂xl
= ∞,

then we know again from the first line of the K-T conditions that at opti-
mum xl > 0. If this is true for all l, then we can ignore the non-negativity
constraints and we are effectively back to a problem with a single equality
constraint.

If ∂u(x)
∂xl

<∞ for x = (xl,x−l) = (0,x−l), then we must also consider cor-
ner solutions where xl = 0 at optimum for some l. For interior solutions,
we get from the first equation by eliminating λ the familiar condition:

∂u
∂xl

∂u
∂xk

=
pl
pk
. (1)

This is of course the familiar requirement from intermediate microeco-
nomics that at optimum, that MRSxl,xk

= pl
pk

. Now we see that the same
condition extends for many goods and the economic intuition is exactly
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the same. The price ration gives the marginal rate of transformation be-
tween the different goods and at an interior optimum, that rate must coin-
cide with the marginal rate of substitution. In some cases, the functional
form is such that the problem can be solved explicitly.

You have probably already some experience with solving explicitly
constrained optimization problems. I include in the appendix to this sec-
tion some examples of typical computations and you will be asked to solve
some more in the problem sets. The main objective in this course is that
you learn how to conceptualize the problems.

3.2.2 Firm’s Profit Maximization Problem

In the most general setup, a firm is represented by a set of technologically
feasible vectors Y ⊂ RL. Negative coordinates designate inputs and posi-
tive coordinates designate outputs.

The key assumptions are made on Y . Typically we make the following
assumptions:

Definition 3.18. The production set Y of a competitive firm satisfies:

1. Y is non-empty and closed.

2. Y ∩ RL
+ = {0}.

3. y ∈ Y and y′ ≤ y ⇒ y′ ∈ Y .

4. y ∈ Y \{0} ⇒ −y /∈ Y .

The first property makes the problem non-trivial and allows (poten-
tially) the existence of profit-maximizing choices. The second says that
you cannot produce something out of nothing (no free lunch) and inaction
is possible. The third property allows for free disposal. The fourth rules
out reversible production processes. Sometimes we also assume that Y is
a convex set.

We can relate Y to familiar notions from intermediate microeconomics.
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Definition 3.19. Y is said to have:

1. Decreasing returns to scale if: y ∈ Y ⇒ αy ∈ Y for all α ∈ [0, 1].

2. Increasing returns to scale if: y ∈ Y ⇒ αy ∈ Y for all α ∈ [1,∞).

3. Constant returns to scale if: y ∈ Y ⇒ αy ∈ Y for all α.

The firm is assumed to operate competitively, i.e. it takes a price vector
p ∈ RL

+ as given and maximizes profit:

max
y∈Y

p · y.

Since the constraint is written in a very general way, we cannot really
write a Lagrangean for this problem in its usual form. We can neverthe-
less describe the boundary of the production set ∂Y = {y ∈ Y |¬y′ ∈
Y such that y′ > y} by a function F (y) = 0. This is called the transforma-
tion function for Y . For strictly positive price vectors, the firm’s optimal
choice is in ∂Y . Then the Lagrangean for the firm becomes:

L(y, λ) = p · y − λF (y).

Exercise 3.20. Write the first-order conditions for optimal y and λ and in-
terpret your result.

Since Y is unbounded, the existence of a solution is not obvious. For
example, if Y satisfies constant returns to scale and some feasible vector
results in a strictly positive profit, then no solution exist to the problem.
We let z(p) = argmaxy∈Y p · x denote the (possibly empty) set of maxi-
mizers in this problem. The set of maximizers is convex if Y is a convex
set.

Sometimes we can be more specific if we know that there is a single
output y and K inputs z = (z1, ..., zK) that can be used to produce the
output. In this case, we write:

y = f(z1, ..., zK),
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with the understanding that y is the maximal quantity of output that can
be produced from input vector z. Profit maximization becomes then:

max
z∈RK

+

pf(z1, ..., zK)−
K∑
k=1

wkzk,

where p > 0 is the output price, and w = (w1, ..., wK) >> 0 is the vector
of input prices. We have already seen in the part on revealed preference
and profit that the firm’s problem is easier to analyze than the consumer’s
problem. Notice that the constraint has been eliminated in this problem,
and the Lagrangean coincides with the objective function.

We denote the solution x(p, w1, ..., wK), z(p, w1, ..., wK) denote the max-
imizers to this problem. An interior solution to the problem exists if f sat-
isfied the Inada conditions: limzk→0

∂f(zk,z−k)

∂zk
= ∞, limzk→∞

∂f(zk,z−k)

∂zk
= 0

for all z ∈ RK
++. The maximizer is unique if f is a strictly quasiconcave

function.

Exercise 3.21. Finnish forestry companies produce pulp using electricity
as an input. They can also reverse the process and burn wood to produce
electricity as an output. Draw a production set that allows for both of these
production plans as optimal solutions depending on the market price of
electricity.

Exercise 3.22. Draw the production set of a firm that must use a fixed
amount z1 in order to produce any strictly positive amount of output q.
Suppose that an additional input of ∆ results in κ∆ units of output. Are
there input and output prices such that the profit maximization problem
of the firm has a solution?
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3.3 Appendix: Examples of Computations

3.3.1 UMP with Constant Elasticity of Substitution

One of the most frequently used functional form in economics is the con-
stant elasticity of substitution, CES function:

u(x) = (a1x
ρ
1 + · · ·+ aLx

ρ
L)

1
ρ ,

for ρ < 1. You can verify that u is quasiconcave e.g. by raising to power
ρ and showing that the resulting function is concave (only non-zero terms
in the Hessian are on the diagonal and negative).

We compute the marginal utility for each xl:

∂u

∂xl
= ρalx

ρ−1
l

1

ρ
(a1x

ρ
1 + · · ·+ aLx

ρ
L)

1
ρ .

Note that since ρ < 1, we have ∂u
∂xl

> 0, and

lim
xl→0

∂u

∂xl
= ∞.

Since the feasible set is convex and the objective function is quasiconcave
with a non-vanishing derivative, the first order conditions are necessary
and sufficient for optimum. Since the marginal utility is unbounded at the
boundary, we know that we have an interior solution and that the budget
constraint is binding. Hence the KKT conditions require simply that for
all i, k:

∂u
∂xl

∂u
∂xk

=
pl
pk
,

and the budget constraint holds as an equality:

L∑
l=1

plxl = 0.
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Hence we have that
a1x

ρ−1
1

akx
ρ−1
k

=
p1
pk
,

or
x1
xk

= (
akp1
a1pk

)
1

ρ−1 ,

or
xk = x1(

akp1
a1pk

)
1

1−ρ . (2)

Substituting into the budget constraint, we get:

p1x1 +
L∑
l=2

plx1(
alp1
a1pl

)
1

1−ρ = w.

We can solve for x1 to get

x1 =
w

p1 +
∑L

l=2 pl(
alp1
a1pl

)
1

1−ρ

.

Substituting into (2), we can solve the other xj .
To get a bit nicer expression, let r = ρ

ρ−1
and assume that al = 1 for all

l. Then we have for each j:

xj =
wpr−1

j∑L
l=1 p

r
l

.

In this case, we are able to solve the optimal demands as explicit func-
tions of the exogenous variables. We call the optimal solutions to the util-
ity maximization problem the Marshallian demands. You have probably
seen these demand functions in models of monopolistic competition as
needed in growth theory, international trade and industrial organization.

If you want to understand where the name constant elasticity of sub-
stitution comes from, you should note that:

xl
xk

= (
pl
pk

)
1

ρ−1 (
ak
al
)

1
ρ−1 .
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Hence a small percentage change in the price ratio between any two
goods induces the same percentage change in the ratio of the optimal con-
sumptions. The size of this change is given by 1

ρ−1
and hence ρ measures

the elasticity of substitution between any two goods. The higher, ρ, the
higher the substitution away from a good when its price increases.

You should consider the comparative statics of the optimal demands in
prices and income. In other words, compute the partial derivatives ∂xl(p,w)

∂pl
,

∂xl(p,w)
∂pj

and ∂xi(p,w)
∂w

. For example, when does the demand for good i in-
crease in the price of another good pj?

3.3.2 Cobb-Douglas utility function

Let’s look at some special cases. By l’Hôpital’s rule, the CES -function
converges to the Cobb-Douglas utility function u(x) = xα1

1 . . . xαL
L as ρ→ 0.

If we just substitute ρ = 0 into the optimal demand, we get

xl =
αlw

pl(
∑L

l=1 αl)
.

For the Cobb-Douglas utility function, you get the result that the expen-
diture share plxl

w
on each good is equal to αl

(
∑L

l=1 αl)
. In this case, the con-

sumer’s expenditure share does not depend on her wealth. In other words,
rich and poor consumers use the same fraction of their income on food,
clothing, yachts etc. This is clearly not a very good description of reality.By
equation (2), you can see that CES -functions do not offer that much help
either. The expenditure shares are still constant in wealth (even though
they depend now on the entire price vector).

3.3.3 Stone-Geary utility function

One way to get more realistic consumption patters is to define the utility
function for consumptions above a level needed for subsistence. Let x =

(x1, ..., xL) be the levels of each good needed for survival and assume that
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w ≥ p · x. The utility function for x ∈ RL such that xl ≥ xl is of Cobb-
Douglas -like form:

u(x) = (x1 − x1)
α1 . . . (xL − xL)

αL ,

where 0 < αl < 1 for all l and
∑L

l=1 αl = 1. This utility specification is
known as the Stone-Geary utility function. Notice that the marginal utility
for good i is infinite if xl = xl and that the utility function is strictly in-
creasing in all of its components. Hence we still have an interior solution
and the budget constraint binds.

We get as above:

∂u(x)
∂xl

∂u(x)
∂xk

=
αl(xk − xk)

αk(xl − xl)
=
pl
pk

for all l, k,

and
L∑
l=1

plxl = w.

We get that
xl − xl =

αlp1
α1pl

(x1 − x1) for all l. (3)

Multiplying both sides by pl and summing over l gives:

L∑
l=1

pi(xl − xl) =
p1

∑L
l=1 αl

α1

(x1 − x1).

So we can solve:

x1 − x1 =
α1(w −

∑L
l=1 plxl)

p1
,

where we used the budget constraint
∑L

l=1 plxl = w and
∑L

l=1 αl = 1

By (3), we see that

xk − xk =
αk(w −

∑L
l=1 plxl)

pk
.
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Now you can see that the consumer uses a constant fraction of her ex-
cess income (above what is needed for the necessities x) in constant shares
given by the αi. Since the poor have less excess wealth, their consumption
fractions are closer to the ones given by the subsistence levels βl :=

xl∑
l xl

.
Hence the richest spend fractions αl on good l and the poorest spend βl.

3.4 Comparative Statics of Optimal Choices

When solving a maximization problem, the end result is in the best case
scenario a vector in the feasible set. As such, it does not tell us much about
the economic forces at play. We are much more interested in knowing
what happens to the solution as the parameters of the problem change:
How does your consumption choices change if the price of gasoline goes
up? What happens to your savings decisions if interest rates go up? What
happens to your demand for insurance if uncertainty about future events
increases? Answering these questions is called the comparative statics of
the model.

3.4.1 Brute Force: IFT

If we can solve our maximization problem, say x(p, w) explicitly (i.e. in
closed form), we can answer such questions by just differentiating the so-
lution with respect to the parameters. Unfortunately, this is rarely the case.
All you have after solving the model is a set of implicit equations from
the KKT-conditions that you know hold at the optimum. In the best case
scenario, (e.g. by having strictly quasiconcave objective and quasiconvex
constraints), you may know that the solution is uniquely pinned down by
the first-order conditions, but how do you proceed from there?

One possibility is brute force. If we have sufficient differentiability in
our objective functions and constraints, we can apply the Implicit Function
Theorem around the solution. Let’s try this for some relatively simple
problems.
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Example 3.23. Consider the following problem (with interpretations to
saving, choice under uncertainty etc.)

maxx1,x2π1u(x1) + π2v(x2)

s.t. p1x1 + p2x2 − w = 0.

If the functions are nice enough, say u(x) = v(x) = lnx, comparative stat-
ics follow immediately from the solutions

x1 =
π1w

p1(π1 + π2)
, x2 =

π2w

p2(π1 + π2)

If u and v are not so nice, we need to look at the KKT first-order condi-
tions:

π1u
′ − λp1 = 0,

π2v
′ − λp2 = 0,

p1x1 + p2x2 − w = 0.

Then we can use implicit function theorem to get for the effects of a change
in p1: π1u′′ 0 −p1

0 π2v
′′ −p2

p1 p2 0


dx1dx2

dλ

 =

 λ

0

−x1

 dp1.

Solving for dx1

dp1
and dx2

dp1
gives (by Cramer’s rule):

dx1
dp1

=
1

|H|
(λp22 − p1x1π2v

′′),

dx2
dp1

=
1

|H|
(p2(−λp1 − x1π1u

′′),

where |H| is the determinant of the Hessian of the Lagrangean, and by
second-order conditions for local maximum, |H| ≤ 0. For changes in π2:

dx1
dπ2

=
1

|H|
(p1p2v

′),
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Obviously, you can write similar expressions for more general u(x1, x2),
but now you will have also cross-partials u12(x1, x2)in the expressions. It
gets a bit messy as you can see if you work out the following recursive
utility formulation with utility function U(x1, u(x2)).

Exercise 3.24. Consider the following consumer problem:

max
x1,x2

= U(x1, u(x2))

s.t. p1x1 + p2x2 − w = 0.

Find the comparative statics of x2 in w. (Hint: assume interior solution
and substitute x1 = w−p2x2

p1
to get to an unconstrained problem in a single

variable).

As you can see, this approach results quite quickly in long strings of
derivatives of different orders, and it is quite hard to sign the comparative
statics. We look next at an alternative that is deceptively simple, and works
sometimes in settings where implicit function theorem does not apply (e.g.
discrete choice variables).

3.4.2 Monotone Comparative Statics

We outline here an approach to monotone comparative statics that does
not hinge on differentiability, but on properties or orderings on the deci-
sion variables and the parameters of the model. The idea is to look again
at parametrized optimization problems.

The simplest setting for such considerations is with a family of func-
tions {f(x, θ)}θ∈Θ, where x ∈ X is the choice variable for some X ⊂ R, and
θ ∈ Θ is a real-valued parameter for the problem: Θ ⊂ R.

The basic question here is to determine which properties of f ensure
that any selection from the set of optimal choices x(θ) ∈ X(θ) is a mono-
tone function. We focus on the case where x(θ) is increasing (or non-
decreasing).
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Here are the two key notions for these notes: single-crossing and strictly
increasing differences.

Definition 3.25 (Single Crossing). A function g : Θ → R is single crossing
if for all θ′′

> θ
′ ,

g(θ
′
) ≥ (>)0 =⇒ g(θ

′′
) ≥ (>)0.

Definition 3.26 (Strictly Single Crossing). A function g (s) is strictly single
crossing if for all θ′′ > θ′,

g(θ′) ≥ 0 =⇒ g(θ
′′
) > 0.

Definition 3.27 (Single Crossing Differences). A family of functions
{f(·, θ)}θ∈Θ has (strictly) single crossing differences if for all x′′ > x′, the func-
tion

δ (θ) := f (x′′, θ)− f (x′, θ)

is (strictly) single crossing.

Notice that these are ordinal properties. It is a good exercise to show
that if {f(·, θ)}θ∈Θ has single crossing difference and h (x, θ) is increasing in
x, then {g(·, θ)}θ∈Θ where g (x, θ) := f (h (x, θ) , θ) has also single crossing
differences.

Definition 3.28 (Strictly Increasing Differences). A family of functions
{f(·, θ)}θ∈Θ has strictly increasing differences (SID) if δ (θ) is strictly increas-
ing. We also say that f (x, θ) has SID.

Remark. It is easy to see that if f (x, θ) has SID, then it also satisfies the
strict single crossing property and single crossing differences, and if f is
differentiable in θ, , then fθ (x, θ) is increasing in x. If it is twice differ-
entiable, then a necessary and sufficient condition for (strictly) increasing
differences is that fθx(x, θ) ≥ (>)0.

Define next an order on families of sets as follows. Let Y (θ) ⊂ R be
sets parametrized by θ.
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Definition 3.29. Y (θ) is increasing (in the strong set order) if for θ′ > θ,

x′ ∈ Y (θ′) and x ∈ Y (θ) ⇒ max{x′, x} ∈ Y (θ′) and min{x′, x} ∈ Y (θ) .

The main tool in monotone comparative statics analysis is the follow-
ing theorem due to Milgrom and Shannon (1994).

Theorem 3.30 (Milgrom and Shannon). The family {f(·, θ)}θ∈Θ has single
crossing differences if and only if argmaxx∈Y f (x, θ) is increasing in θ for
all Y ⊆ X.

Hence if f (x, θ) has SID, the set of maximizers is increasing (in the
strong set order). If f is strictly quasiconcave in x, then the unique maxi-
mizer is increasing in θ. The proof of this Theorem is left as an exercise.

This approach is indeed quite straightforward and does not involve
complicated computations as much as implicit function theorem. At the
same time, there are some shortcomings. You may note that up to this
point, we have assumed X ⊂ R. This guarantees that min{x, x′} ∈ X

and max{x, x′} ∈ X if x, x′ ∈ X . This is clearly not necessarily true if
X ⊂ RL for L > 1. By defining max{x, x′} and min{x, x′} for all x, x′ ∈ X ,
we are defining a partial order on X . A partially ordered set X is called
a lattice if for all x, x′ ∈ X , min{x, x′} and max{x, x′} ∈ X . We typically
denote the minimum and maximum of two vectors by x ∧ x′ and x ∨ x′.
For X ⊂ RL, we define x ∧ x′ = (min{x1, x′1}, ...,min{xL, x′L}), and x ∨
x′ = (max{x1, x′1}, ...,max{xL, x′L}), i.e. the componentwise minimum and
maximum of the two vectors.

Definition 3.31. We say that a function f(x, θ) on X,Θ is supermodular in
x if X is a lattice, and for all x,x′ ∈ X , and for all θ ∈ Θ,

f(x ∨ x′, θ) + f(x ∧ x′, θ) ≥ f(x, θ) + f(x′, θ).

Exercise 3.32. Show that if f(x, θ) is twice differentiable in x, then f is
supermodular in x if and only if ∂2f(x,θ)

∂xi∂xj
≥ 0 for all i ̸= j ∈ {1, ..., L}.
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If X is a lattice and if Θ is a partially ordered set,9 we define increasing
differences as before.

Definition 3.33. Suppose thatX is a lattice and Θ is a partially ordered set.
A function f : X ×Θ → R has increasing differences in (x; θ) if for all x′ > x

and θ′ > θ,
f(x′, θ′)− f(x, θ′) ≥ f(x′, θ)− f(x, θ).

One of the most fundamental theorems in monotone comparative stat-
ics is the following due to Topkis (1978).

Theorem 3.34 (Topkis). Suppose X is a lattice, Θ is a partially ordered
set, and f : X × Θ → R. If f is supermodular in x, and has increasing
differences in (x; θ), then argmaxx∈X f(x, θ) is monotone nondecreasing
in θ (in the strong set order).

Proof. Let X∗(θ) = argmaxx∈X f(x, θ). Fix any θ′ ≥ θ, and x ∈ X∗(θ) and
x′ ∈ X∗(θ′). Note that

0 ≤ f(x, θ)− f(x ∧ x′, θ) since x ∈ X∗(θ),

≤ f(x ∨ x′, θ)− f(x′, θ) by supermodularity,

≤ f(x ∨ x′, θ′)− f(x′, θ′) by increasing differences ,

≤ 0 since x′ ∈ X∗(θ′).

Thus f(x, θ) = f(x ∧ x′, θ) and f(x ∨ x′, θ) = f(x′, θ), which implies
x ∧ x′ ∈ X∗(θ) and x ∨ x′ ∈ X∗(θ′).

If f(x, θ) is strictly quasiconcave in x, then the unique maximizer is
increasing in θ.

Monotone comparative statics often helps you to avoid the tedious cal-
culations of implicit function theorem. Verifying strictly increasing dif-
ferences (and supermodularity) is sometimes quite easy. You should also

9This means that there is a transitive, reflexive and antisymmetric binary relation ≥
defined on Θ
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note that X and Θ may be discrete sets (as long as the former is a lat-
tice and the latter is partially ordered). Unfortunately not all interesting
feasible sets are lattices in economics. The most obvious example is the
budget set B(p, w). Monotone comparative statics is still extremely useful
for many decision problems under uncertainty, firm’s problems and in the
theory of mechanism design. We end with some examples of this method.

Example 3.35. Consider the effects of an increase in the market size on
monopoly price. Each consumer in this market has an inverse demand
given by P (q). If the number of customers N is exogenous, then firm’s
problem is to choose a quantity per customer q to maximize:

π(q,N) = NqP (q)− C(Nq).

Without some restrictions on demand, we cannot conclude that π has in-
creasing differences in (q;N). However, note that forN > 0, we have

argmax
q≥0

π(q,N) = argmax
q≥0

π(q,N) = argmax
q≥0

qP (q)− C(Nq).

Thus, q∗(N) is nondecreasing inN if −C(Nq)/N has increasing differences
in (q;N). Assuming that C is twice continuously differentiable (this as-
sumption is not required for the conclusion but makes the characterization
of increasing differences simpler),

d2(−C(Nq)/N)

dNdq
=
d(−C ′(Nq))

dN
= −qC ′′(Nq).

Thus q∗(N) is nondecreasing inN if C is concave, and q∗(N) is nonincreas-
ing in N if C is convex. No restrictions on the inverse demand function
are required for this conclusion. It is important to note that taking a trans-
formation that depends on the choice variable x would alter the set of
maximizers. For example, dividing by q in the previous example would
change the solution set and could therefore yield incorrect conclusions. Be
careful when applying this method that your transformation only involves
parameters and not choice variables.
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Exercise 3.36. Consider a two-period consumption-savings problem. The
suppose the individual has the following utility function for (c1, c2) ∈ R2

+:

U(c1, c2) = u(c1) + βu(c2)

where β ∈ (0, 1) and u : R+ → R is strictly increasing. The individual
has initial wealth w at the start of period 1 and can save between the two
periods at a (deterministic) gross interest rate of (1 + r) > 0.

1. Suppose you know that u is twice continuously differentiable and
concave, u′′ ≤ 0. What conclusions can be made about how the opti-
mal c1 and c2 change with wealth w? (Hint: Substitute out one of the
consumptions using the budget constraint).

2. In the previous parts of the problem, is it possible to have a selec-
tion c∗1(w) from the optimal consumption choices in period 1 that
strictly decreases in w at some wealth levels, so w′ > w and c∗1(w

′) <

c∗1(w)? Either provide an example where this can happen or prove
that it cannot happen. Also, if your answer is that c∗1(w) can strictly
decrease in w under the assumptions given in this problem, what
change in the assumptions would ensure that every selection c∗1(w

′)

from the solution is monotonically nondecreasing in w?

3.5 Value Function and Envelope Theorem

In this last subsection, we will look at the value functions related to maxi-
mization and minimization problems. The value function to an optimiza-
tion problem is obtained simply by substituting a solution of the problem
to the objective function. Let’s see how this goes through an example

Example 3.37. Consider the UMP maxx∈B(p,w) u(x) with a strictly quasi-
concave u so that the solution x(p, w) is single-valued for all (p, w). The
value function of the problem is then v(p, w) := u(x(p, w)). This value func-
tion is called the indirect utility function of the problem, and it records the
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maximal utility level attainable at the budget set B(p, w). Note that the
numerical value is not really important since the utility function itself is
only ordinal representation of the preferences.

In general, we can consider any parametric family of optimization prob-
lems, maxx∈X(α) f(x;α), where α is the parameter (possibly vector) of in-
terest. If x(α) is a solution to the problem, then V (α) = f(x(α);α) is the
value function of the problem.

In the next section, we shall see that the value functions of optimiza-
tion problems contain almost all relevant information for the problems.
Before that, we discuss one of the most important results in mathematical
economics: the envelope theorem. The envelope theorem gives a concrete
interpretation to Lagrange multipliers and it is an extremely useful tool
for comparative statics. Assume that the objective function u and the con-
straint functions gk are differentiable in (x, α).

Theorem 3.38 (Envelope Theorem). If V (α) is the value function of a con-
strained optimization problem with an objective function u(x, α) on RL

depending on a parameter α ∈ R with K binding constraints and La-
grangean

L(x, λ;α) = u(x;α)−
K∑
k=1

λkgk(x;α),

then:

V ′(α) =
∂u(x∗, α)

∂α
−

K∑
k=1

λ∗k
∂gk(x

∗;α)

∂α
.

The proof is in the Appendix to this section.
Note that for the case of unconstrained optimization problems, we get

simply:

V ′(α) =
∂u(x;α)

∂α
.

In fact, this result is much more general, and really only requires differen-
tiability of u in α. The following is a slightly simplified version of Milgrom
and Segal (2002), and it is valid for α ∈ [α, α].

50

https://onlinelibrary.wiley.com/doi/10.3982/ECTA12345
https://onlinelibrary.wiley.com/doi/10.3982/ECTA12345


Theorem 3.39 (Milgrom and Segal, 2002). Assume that

• f(x;α) is differentiable in α with a uniformly bounded derivative

∂f(x;α)

∂α
≤ K <∞ for all x ∈ X,

• The set of optimizers X∗ (α) ̸= ∅ for all α.

Then V (α) is absolutely continuous, and for any selection x∗ (α) from
X∗ (α) ,

V ′ (α) =
∂f(x∗;α)

∂α

for almost every α, and therefore

V (α) = V (α) +

∫ α

α

∂f(x∗(s); s)

∂α
ds.

You will see versions of envelope theorem in this course, and later also
in macroeconomics (dynamic programming) and in economics of uncer-
tainty (Advanced Microeconomics 4). Let’s list some important economic
instances where value functions play a key role.

1. Indirect utility function v(p, w) = maxx∈B(p,w) u(x).

2. Profit function π(p) = maxy∈Y p · y.

3. Cost function c(w, q) = minz:f(z)≥q w · z.

4. Expenditure function: e(p, u) = minx:u(x)≥u p · x.

5. Value of information: V (π) = maxx∈X
∑I

i=1 πiu(x, ωi).

6. Value with types: V (θ) = max(x,p)∈{(xi,pi)}Ii=i
v(x, θ)− p.

You may note that if we were really pedantic, the indirect utility func-
tion should also be indexed by the underlying utility function u, the profit
function by Y , etc. The notation above suggests that we will keep these
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fixed throughout and we have listed only the parameters of interest to
our comparative statics. We have already discussed the utility and profit
maximization problems. The cost function outputs the smallest cost at
which you can reach the output target q if input cost vector is w and the
production function is f . Expenditure function is the cost function of the
consumer to reach utility level u at prices p. We’ll talk more about the
value of information in Section 5 of this course. You can think of it as the
maximal expected utility that you can reach in a decision problem under
uncertainty if your belief over the states of nature is given by the prob-
ability vector π. The last one you will see in Advanced Microeconomics
4. It gives the maximal value to a buyer with preference parameter θ if
she can choose from a menu {(xi, pi)}Ii=i of I different options xi offered at
associated prices pi.

As an aside, you should be able to say something about the compara-
tive statics about the optimal solutions in some of these problems in light
of our previous section on monotone comparative statics. Just see if you
have strictly increasing differences in the choice variable and the parame-
ter (and if the choice is over vectors, check supermodularity).

Here is a key proposition on the shape of value functions.

Proposition 3.40. If the choice set X does not depend on α ∈ A, and A is a
convex set, then:

1. V (α) = maxx∈X u(x;α) is convex if u(x;α) is convex in α.

2. V (α) = minx∈X u(x;α) is concave if u(x;α) is concave in α.

Proof. We prove the claim in the first case. The second case is analogous
and left as an exercise. We need to show that for all α, α′ ∈ A and for all
λ ∈ [0, 1]:

λV (α) + (1− λ)V (α′) ≥ V (λα + (1− λ)α′).

Let x solve maxx∈X u(x;α), x′ solve maxx∈X u(x;α
′), and xλ solve maxx∈X u(x;λα+

(1− λ)α′). Since u is convex in α by assumption, we have:

λu(xλ;α) + (1− λ)u(xλ;α′) ≥ u(xλ;λα + (1− λ)α′).
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By definition,

u(x;α) ≥ u(xλ;α) and u(x′;α) ≥ u(xλ;α′).

Therefore we have:

λV (α) + (1− λ)V (α′) = λu(x;α) + (1− λ)u(x′;α′)

≥ u(xλ;λα + (1− λ)α′) = V (λα + (1− λ)α′).

Since linear functions are concave and convex, this tells us immediately
that the profit function and the value of information are convex functions
whereas the expenditure function and the cost function are concave. We
cannot say anything at this stage about the indirect value function since
there the choice set depends on parameters. The value of information is
convex in π, and value with types is convex if v(x, θ) is convex in θ.

Let’s end this subsection with two results on indirect utility function.
The first is an application of the envelope theorem.

Proposition 3.41 (Roy’s Lemma). Suppose v(p, w) is differentiable. Then
for all l ∈ {1, ..., L}, we have:

xl(p, w) = −
∂v(p,w)

∂pl
∂v(p,w)

∂w

.

Proof. The Lagrangean of the utility maximization problem is:

L = u(x)− λ(
L∑
l=1

plxl − w).

By envelope theorem,
∂v(p, w)

∂pl
= −λxl,

∂v(p, w)

∂w
= λ.

Therefore the result follows by division.
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Proposition 3.42. The indirect utility function v(p, w) is quasiconvex in
(p, w)

Proof. To prove this, we must show that v(λp+(1−λ)p′, λw+(1−λ)w′) ≤
max{v(p, w), v(p′, w′)}. Let xλ denote the optimal choice from B(λp+(1−
λ)p′, λw + (1− λ)w′).

Since xλ ∈ B(λp + (1 − λ)p′, λw + (1 − λ)w′), either xλ ∈ B(p, w) or
xλ ∈ B(p′, w′), and the claim follows.

3.5.1 Appendix: Proof of Differentiable Envelope Theorem

Envelope Theorem.

V ′(α) =
∂u(x∗, α)

∂α
+

L∑
i=1

∂u(x∗, α)

∂xi
x′i(α).

The first-order condition w.r.t. xi gives:

∂u(x∗, α)

∂xi
−

K∑
k=1

λ∗k
∂gk(x

∗, α)

∂xi
= 0,

so that

V ′(α) =
∂u(x∗, α)

∂α
+

L∑
i=1

K∑
k=1

λ∗k
∂gk(x

∗, α)

∂xi
x′i(α).

Totally differentiating each binding constraint k gives:

L∑
i=1

∂gk(x
∗, α)

∂xi
x′i(α) +

∂gk(x
∗, α)

∂α
= 0.

Multiplying by λ∗k, summing over k, and changing the order of summation
gives:

L∑
i=1

K∑
k=1

λ∗k
∂gk(x

∗, α)

∂xi
x′i(α) = −

K∑
k=1

λ∗k
∂gk(x

∗, α)

∂α
.

Hence we have the result.
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4 Duality in Consumer and Firm Theory

4.1 Expenditure Minimization Problem

When economists talk about duality in consumer theory, they normally
have in mind the connections between quasiconcave utility maximiza-
tion in a budget set and expenditure minimization to get to a fixed utility
level.10 Let’s start by laying out the expenditure minimization problem for
a given utility function u(x) on RL

+:

min
{x:u(x)≥u}

p · x =
L∑
l=1

plxl.

We shall assume throughout that utility functions are strictly monotonic.
Let h(p, u) ⊂ RL

+ denote the set of solutions to this problem. Each selection
from this correspondence is called a compensated or Hicksian demand func-
tion for the problem. The value function e(p, u) of the problem is called the
expenditure function of the problem.

Figure 5 for expenditure minimization (or the first order KKT condi-
tions) shows that isoexpenditure sets with prices p and λp are parallel.
Hence Hicksian demands are homogenous of degree 0 in p and the expen-
diture function is homogenous of degree 1 in p. You can also show that
e(p, u) is increasing in p and strictly increasing in u. In fact, we have the
following result.

Proposition 4.1. If e(p, u) is i) homogenous of degree 1 in p, ii) concave
(and therefore continuous) in p, iii) increasing in p, iv) strictly increasing

10In mathematical terms, this approach establishes Fenchel duality between each con-
vex upper contour sets and its support function, the expenditure function of the problem.
The price vector determines a normal to a hyperplane along which the cost p · x is con-
stant. The expenditure function e(p, u) determines a constant so that the the hyperplane
{x ∈ RL

+|p · x = e(p, u)} is a supporting hyperplane to the convex set {x|u(x) ≥ u}.
Since any convex set is determined by its supporting hyperplanes, e(p, u) contains all the
information about the upper contour sets, and therefore the utility function.
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in u. Then it is the value function of an expenditure minimization problem
for some quasiconcave utility function u.

The proof is slightly involved so we will not attempt it here.
We saw in the previous section that e(p, u) is a concave function of p. If

the Hicksian demand h(p, u) is a function (i.e. single-valued for all (p, u),
then e(p, u) is differentiable in p and the envelope theorem gives us the
following result:

Proposition 4.2 (Shephard’s Lemma). If e(p.u) is differentiable, then ∂e(p,u)
∂pj

=

hj(p, u).

We also note for future use that since e(p, u) is concave, it has a negative
semi-definite Hessian matrix (if it is twice differentiable).

4.1.1 Appendix: Expenditure minimization problem

We cover briefly the mechanics of solving the expenditure minimization
problem subject to the constraint of reaching a specified level of utility. All
the notation is exactly as in the previous subsection. We assume that the
utility function that we have is quasiconcave.

min
x∈RL

+

p · x =
L∑
i=1

pixi,

subject to
u(x) ≥ u.

This means that we have a linear and thus quasiconvex objective func-
tion for our minimization problem and since the utility function is qua-
siconcave, the feasible set is convex. Hence we know that KKT neces-
sary conditions are also sufficient. Notice that the feasible set is now not
bounded (why?), but the solution exists because we can take any x∗ such
that u(x∗) ≥ u and restrict attention to x such that

p · x ≤ p · x∗,

56



since x∗ is a feasible solution. But this set is convex and bounded since it
is a budget set.

The Lagrangean to the problem is:

L(x, λ) =
L∑
i=1

pixi − λ0(u(x)− u)−
L∑
i=1

λixi.

The first-order conditions are:

∂L
∂xi

= pi − λ0
∂u

∂xi
− λi = 0 for all i,

λ0[u(x)− u] = 0,

λixi = 0 for all i,

u− u(x) ≤ 0,

−xi ≤ 0 for all i,

λi ≥ 0 i ∈ {0, 1, ..., L}.

Notice that for interior solutions (where λ1 = λ2 = ... = λL = 0), we
get again (after eliminating the multiplier) from the first line of the K-T
conditions that

∂u(x)
∂xi

∂u(x)
∂xk

=
pi
pk
.

We have exactly the same situation as before. Now the ratio of marginal
utilities is really the MRT for the problem since it describes the feasible set.
The price ratio is now the MRS of this new problem.

4.2 Duality and Slutsky Equation

The Walrasian demand x(p, w) finds the maximal indifference curve in
the budget set B(p, w). The value function v(p, w) gives the utility level at
this maximal indifference curve. Hicksian demand asks which point on a
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Figure 4: UMP for w = e(p, v(p, w))

x

y

pxx+ pyy = e(p, v(p, w))

u(x, y)

∇u

x̂(px, py, w)

ŷ(px, py, w)

given indifference curve u(x) = u is the cheapest at prices p. Iso-cost lines
(sets of points at equal cost) are uniquely determined by a point and the
price vector p (they satisfy p ·x = c for some cost c). It should not come as
a great surprise that the cheapest way to achieve utility level v(p, w) is by
setting h(p, v(p, w)) = x(p, w).

How do we see this? If h(p, v(p, w)) ̸⊂ x(p, w), then there is some
optimal demand h∗(p, v(p, w)) ∈ h(p, v(p, w)) such that h∗(p, v(p, w)) /∈
x(p, w). Therefore either u(h∗(p, v(p, w))) < v(p, w) or p · h∗(p, v(p, w)) >

w = p ·x(p, w),where the last equality is by strict monotonicity of u. In the
first case, the target utility is not reached. In the second, the expenditure
is not minimized. Hence h(p, v(p, w)) ⊂ x(p, w)

Similar steps allow us show that x(p, w) ⊂ h(p, v(p, w)) and this is left
as an exercise.

Exercise 4.3. Show that x(p, w) ⊂ h(p, v(p, w)).

I may have been again overly pedantic since in this particular case, one
picture is worth a thousand words: see figures 4 and 5.

You can also see that for u = v(p, e(p, u) and e(p, v(p, w)) = w the
solutions to expenditure minimization and UMP coincide for all p:

hl(p, u) = xl(p, e(p, u)) for all l,
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Figure 5: Expenditure minimization for u = v(p, e(p, ū))

x

y

pxx+ pyy

u(x, y) = v(p, w)

x̂(px, py, u)

ŷ(px, py, u)

hl(p, v(p, w)) = xl(p, w) for all l.

Since these relationships hold for all p, the left-hand side and the right-
hand side are the same functions when viewed as functions of p. We can
therefore require all the partial derivatives of the two sides to be equal.
Differentiate the first of these identities with respect to pj to get:

∂hl(p, u)

∂pj
=
∂xl(p, w)

∂pj
+
∂xl(p, w)

∂w

∂e(p, u)

∂pj
.

By Shephard’s Lemma, ∂e(p,u)
∂pj

= hj(p, u), so that:

∂hl(p, u)

∂pj
=
∂xl(p, w)

∂pj
+
∂xl(p, w)

∂w
hj(p, u).

Using the first relationship above, the right-hand side is

∂xl(p, w)

∂pj
+
∂xl(p, w)

∂w
xj(p, e(p, u))

=
∂xl(p, w)

∂pj
+
∂xl(p, w)

∂w
xj(p, e(p, v(p, w))

=
∂xl(p, w)

∂pj
+
∂xl(p, w)

∂w
xj(p, w).
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Figure 6: Income and Substitution Effects

This is the famous Slutsky equation for income and substitution ef-
fects. The observable change ∂xl(p,w)

∂pj
in Marshallian demands can be de-

composed into a substitution effect, i.e. the change in compensated de-
mand ∂hl(p,u)

∂pj
and the observable income effect ∂xl(p,w)

∂w
xj(p, w):

∂xl(p, w)

∂pj
=
∂hl(p, u)

∂pj
−
∂x(p, w)

∂w
xj(p, w).

Since we know that the Hessian of e(p, u) is negative semi-definite, we
know that its diagonal elements are non-positive. Hence the effect of in-
creasing pi on xi is negative whenever the demand for i is increasing in
income (we say then that i is a non-inferior good).

4.2.1 Integrability

We have seen that demand functions arising from utility maximization
problems satisfy:

1. Homogeneity of degree 0 (budget set does not change if all prices
and income multiplied by the same strictly positive number).
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2. Walras’ law: if the utility function is strictly increasing, then all in-
come is used:

L∑
l=1

plxl(p, w) = w for all p >> 0, w > 0.

3. The matrix X (called the Slutsky matrix) with (l, k)th element xlk =
∂xl(p,w)

∂pk
+ ∂xl(p,w)

∂w
xk(p, w) is negative semi-definite.

4. From Young’s theorem, Slutsky matrix is symmetric.

We could ask conversely, what conditions on a vector valued function
x(p, w) guarantee that it is the Marshallian demand for some utility max-
imization problem. A remarkable (but unfortunately somewhat hard to
prove) result states that the above four conditions are sufficient.

Theorem 4.4 (Integrability). If x(p, w) is homogenous of degree 0 in (p, w),
satisfies Walras’ law and has a symmetric and negative semi-definite Slut-
sky matrix, then there is a strictly increasing and quasiconcave utility func-
tion u(x) such that x(p, w) = argmaxx∈B(p,w) u(x).

Now is again a good time to pause and consider what we have achieved.
If our standard for coherent choice is that choices maximize a rational pref-
erence, we have found a sufficient condition for this. Coherent choice by
WARP gave us a negative semi-definite Slutsky matrix. Afriat’s theorem
demand functions satisfying SARP (i.e. no cycles in indirect revealed pref-
erence) gave a condition for a finite set of observations to be consistent
with coherent choice.

4.3 Welfare Evaluations and Aggregation

How should we think about the welfare effects of changes in (p, w)? As
economists, we are often interested in market behavior rather than indi-
vidual consumers. Do the positive and normative findings on individual
buyers generalize to market (aggregate demand) analysis?
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Unfortunately we do not have perfect answers to either of the ques-
tions. Let’s start with individual welfare evaluation. Since utilities are or-
dinal, we would really want to have the comparisons in monetary terms.
One way of doing this is by fixing a price p and ask how large expenditure
(at those prices) is needed to reach utility level v(p, w). In other words, we
would evaluate e(p, v(p, w)). We would have a fine theory if these mea-
surements were independent of how p was chosen, but unfortunately this
is not the case.11

4.3.1 Individual Welfare Effects

Consider price changes from p0 to p1 holding income w fixed, and denote
the attainable utility levels by u0 = v(p0, w) and u1 = v(p1, w). We could
fix the prices for measuring the change either at the old prices p0 or at the
new prices p1. The former is called equivalent variation or EV (p0,p1, w),
and the latter is called compensating variation or CV (p1,p1, w).

EV (p0,p1, w) = e(p0, u1)− e(p0, u0) = e(p0, u1)− w,

CV (p0,p1, w) = e(p1, u1)− e(p1, u0) = w − (p1, u0).

Since Shephard’s Lemma gives: ∂e(p,u)
∂hl

= hl(p, u) and sincew = e(p1, u1) =

e(p0, u0), we can write the above equalities (by the fundamental theorem
of calculus) for price changes in pl as:

EV (p0,p1, w) =

∫ p0

p1

hl(p, u
1)dpl,

CV (p0,p1, w) =

∫ p0

p1

hl(p, u
0)dpl.

For normal goods, hl(p, u0) < hl(p, u
1) if u0 < u1. Hence we see that for

normal goods, the welfare effect for a decrease in pl satisfies:

CV (p0,p1, w) < EV (p0,p1, w).

11This is also the reason why it is not possible to construct perfect index numbers for
welfare measurement.
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If there are no income effects (i.e. demand for good l is independent of
income), then the two measures coincide.

A third alternative (and one that is often used in practice since the Wal-
rasian demands are easier to estimate than Hicksian demands) is consumer
surplus denoted by CS(p0.p1, w), and defined (for changes in pl) by:

CS(p0,p1, w) =

∫ p0

p1

xl(p, w)dpl.

For u1 > u0, we have for normal goods:

hl(p, u
0) < xl(p, w) < hl(p, u

1),

(with reverse inequalities for inferior goods), and we get:

CV (p0,p1, w) < CS(p0,p1, w) < EV (p0,p1, w),

and all three measures coincide if there are no income effects.
Again, it is a good idea to look at a picture. For normal goods, Slutsky

equation tells us that Hicksian demands are steeper than Walrasian ones.

Exercise 4.5. Locate the two welfare measures in Figure 7. Where is the
Walrasian demand located in this Figure?

4.4 Cost minimization problem for a firm

A firm chooses its inputs k, l to minimize the cost of reaching a production
target of q at given input prices r, w. The production function is assumed
to be a strictly increasing and quasiconcave function f(k, l).

min
(k,l)∈R2

+

rk + wl

subject to
f(k, l) ≥ q.

Notice that this is the same mathematical problem as in expenditure
minimization. Only the names of variables have changed. The solution to
the problem is therefore also identical and we do not repeat it here.
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Figure 7: Hicksian Demands at Different Utility levels

4.5 Computed Example: All the Way to Slutsky

Start with a utility maximization problem with Cobb-Douglas preferences
and strictly positive prices px, py for the two goods x, y, i.e.:

max
x,y

xαy1−α

subject to:
pxx+ pyy ≤ w, x ≥ 0, y ≥ 0.

Form the Lagrangean:

L(x, y, λ1, λ2, λ3) = xαy1−α − λ1(pxx+ pyy − w) + λ2x+ λ3y.

We have argued in previous lectures that since the utility function is strictly
increasing, the budget constraint will bind and the non-negativity con-
straints do not bind at the optimum. We have also derived the solution to
be:

x(px, py, w) =
αw

px
, y(px, py, w) =

(1− α)w

py
.
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By substituting these optimal solutions to the objective function, we get
the indirect utility function:

v(px, py, w) = x(px, py, w)
αy(px, py, w)

(1−α) = w(
α

px
)α(

(1− α)

py
)(1−α).

You should check that this indirect utility function is homogenous of de-
gree 0 in (px, py, w), i.e. that multiplying both prices and the income w by
the same positive number λ leaves that value of the indirect utility func-
tion unchanged. You should also check that Roy’s identity holds, i.e. that
you get the demand function from:

x(px, py, w) = −
∂v(px,py ,w)

∂px
∂v(px,py ,w)

∂w

.

Consider next the expenditure minimization problem for the same pref-
erences:

min
x,y

pxx+ pyy

subject to:
xαy1−α ≥ ū, x ≥ 0, y ≥ 0.

Form the Lagrangean (to get the signs of the multipliers correct, you may
remember that minimizing f(x) has the same solution as maximizing −f(x)
:

L(x, y, λi, λ2, λ3) = −pxx− pyy + λ1(x
αy1−α − ū) + λ2x+ λ3y.

We see immediately that if ū = 0, then the optimal solution is x = y = 0.
For ū > 0, the only feasible consumptions are interior and hence λ2 =

λ3 = 0. The utility constraint must be binding since otherwise it would be
possible to lower the consumption of one of the goods leading to a smaller
expenditure without violating any of the constraints.

The first order conditions for this minimization problem are:

px − λ1α
xαy1−α

x
= 0,
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py − λ1(1− α)
xαy1−α

y
= 0,

xαy1−α − ū = 0.

Solving from the first two equations, we get:

y =
px
py

(1− α)

α
x.

Substituting to the third first-order condition gives:

x(px, py, ū) = ū(
px
py

(1− α)

α
)α−1,

and similarly:
y(px, py, ū) = ū(

py
px

α

(1− α)
)−α.

These are called the Hicksian or compensated demands for x and y.
The value function, i.e. the expenditure function is then:

e(px, py, ū) = ū(px(
px
py

(1− α)

α
)α−1 + py(

py
px

α

(1− α)
)−α).

Is the expenditure function homogenous? Of what degree? Can you see
that by taking the partial derivative of this expenditure function, you get
back the compensated demand for x?

Finally, you can verify the Slutsky equation. For example, the partial
derivative of the compensated demand for x with respect to own price:

∂x(px, py, ū)

∂px
= ū(α− 1)

1

px
(
px
py

(1− α)

α
)α−1

is equal to

∂x(px, py, w)

∂px
+ x(px, py, w)

∂x(px, py, w)

∂w
= −αw

p2x
+
α2w

p2x
,

when evaluated at ū = v(px, py, w) = w( α
px
)α( (1−α)

py
)(1−α).
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4.6 Aggregation

Intermediate microeconomics is centered around the questions of market
demand and market supply. What happens when we look at aggregate
demand, i.e. when we sum together individual demands? Will the ag-
gregate demand satisfy the properties that we derived for the individual
demands? If all consumers face the same prices, does the distribution of
wealth amongst the consumers affect the aggregate demand? Can we have
a welfare interpretation for the market demand, i.e. can market demand
be assumed to arise from a representative consumer?

We will not have time for a full discussion of these issues in these notes,
but I will comment briefly on each question.

If all consumers i ∈ {1, ..., I} in the economy have Walrasian demand
functions xi(p, wi) derived, does the aggregate demand x(p,w) =

∑I
i=1 xi(p, wi),

where w =
∑I

i=1w1, ..., wI satisfy the necessary conditions for rational de-
mand functions? Unfortunately this fails badly. We cannot even get com-
pensated law of demand for the sum of individual demands that satisfy it.
Here is a simple example showing this

Example 4.6. Assume two consumers with equal income w = 4.4. At
prices p = (2, 1) consumer 1 demands x1(2, 1; 4.4) = (1.4, 1.6) and at prices
p = (1, 2) she demands x1(1, 2; 4.4) = (0, 2.2). For consumer 2, the de-
mands are x2 = (2, 1; 4.4) = (2.2, 0) and x2(1, 2; 4.4) = (1.6, 1.4) respec-
tively. The aggregate demands x(2, 1, 8.8) = (3.6, 1.6) and x(1, 2, 8.8) =

(1.6, 3.6) do not satisfy WARP (or if you will, the average demand is not
consistent with WARP).

On the other hand, if all buyers have Walrasian demand functions sat-
isfying the individual law of demand ∂xil(p,wi)

∂pl
< 0, then aggregate law of

demand holds also: ∂xl(p,w)
∂pl

< 0. This follows immediately from the fact
that the derivative of a sum is the sum of derivatives.

For the second question regarding the sensitivity to changes in income
distribution, the only instance where aggregation works nicely is if all con-
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sumers have expenditure functions that take the Gorman polar form:

ei(p, ui) = ai(p) + b(p)ui.

This can be interpreted as saying that the consumers have parallel lin-
ear (or affine) Engel curves, i.e. income expansion paths. To see this, use
ei(p, v(p, wi)) = wi and ui = vi(p, wi) to invert:

vi(p, wi) =
wi − ai(p)

b(p)
.

Then use Roy’s identity to get individual demand for good l:

xil =
∂ai(p)

∂pl
+ (wi − ai(p))

∂b(p)
∂pl

b(p)
,

which is clearly linear in wi. Since
∂b(p)
∂pl

b(p)
is the same for all consumers, only

aggregate income, not its distribution, matters for aggregate demand.
When using this result, you should be very careful with the sign on

the derived demands. In most cases, only positive demands make sense.
Incorporating this requirement may result in a piece-wise linear Engel-
curve, and then the aggregation result does not hold.

Particular cases of Gorman polar form include the setting where con-
sumers have identical homothetic utility functions so that vi(p, wi) = v(p)wi,
quasilinear utilities and the Stone-Geary utility function that we already
saw in 3.3.3.

Finally for the last point, the results are quite disappointing. Apart
from the case of identical consumers, or consumers with expenditure func-
tions in the Gorman polar form, very few cases admit a positive or a nor-
mative interpretation of the market demand as the demand of a meaning-
fully defined representative consumer. See MWG chapter 4 for additional
material.
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4.7 Appendix: Other Dualities

Another duality relationship in classical consumer theory is the duality
between utility maximization and indirect utility minimization. This is
closer to the duality that you may have seen in Linear Programming. Since
B(p̃, w) = B( p̃

w
, 1), we can let w = 1 for this discussion and just talk about

p = p̃
w

so that v(p) = maxx∈B(p) u(x). The only point where you need to be
careful is with the allowed forms of utility functions. If the utility function
is quasiconcave, you can verify the following by drawing a picture (or by
considering the KKT conditions for the minimization problem).

v(p∗(x∗)) = u(x∗(p∗),

where p∗ solves
min

{p:p·x∗=1}
v(p),

and x∗ solves
max

{x:p∗·x=1}
u(x).

Based on this duality, you will believe that an indirect utility function en-
codes all information present in a quasiconcave utility function, and you
can find the Walrasian demands by differentiation (Roy’s identity).

Let us summarize: If a function v(p, w) is an indirect utility function of
a utility maximization problem for some strictly monotone quasiconcave
and continuous utility function u, then it is: i) Homogenous of degree
0 in (p, w), ii) Strictly decreasing in pl for all l when w > 0, iii) Strictly
increasing in w, iv) quasiconvex in (p, w), v) Continuous.

Conversely any function v(p, w) satisfying these properties is an indi-
rect utility function for some strictly monotonic continuous and quasicon-
cave utility function.
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4.8 Duality in Firm Theory

There are two useful dualities in the theory of the firm. We start with the
most fundamental representation of the profit maximization problem.

max
y∈Y

p · y.

We denote the solution to this problem by the supply correspondence
y(p), and the value function of the problem ise denoted by π(p) and called
the profit function. The duality is now between the production set Y and
its support function, the profit function. If Y is convex, then we have the
duality:

Y = {y|p · y ≤ π(p) for all p}.

We have again by envelope theorem the following proposition.

Proposition 4.7 (Hotelling’s Lemma). If π(p) is differentiable, then ∂π(p)
∂pl

=

yl(p).

The proof is left as an exercise. The other important duality is for the
case where the firm has a single output y produced from input vector z

according to the quasiconcave production function y = f(z). Let p be the
output price and w the vector of input prices. Then we can look at the cost
minimizing problem subject to producing at least q units.

min
{z:f(z)≥q}

w · z.

Apart from changing the names of variables, you should recognize this as
the same mathematical problem as the expenditure minimization problem
that we had before. z(w; q) is known as the conditional input demand and
the value function c(w, q) = min{z:f(z)≥q}w · z is called the cost function.
One key difference is that f is a function determined by the production
technology and therefore it is cardinal. As a result, if we look at increasing
transformations of f , we have different technologies.
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Notice that in this course, we have been really interested in how c be-
haves as a function of w, i.e. the comparative statics representing changes
between technologies as a function of input prices. In intermediate mi-
croeconomics courses, the interest is mostly on how c depends on q (the
prices are kept fixed throughout the analysis).

Of course at the end of the day, the firm decides optimal level of pro-
duction:

max
q∈R+

pq − c(w; q).

At this step, we get back the familiar intermediate microeconomics first-
order condition for profit maximization:

p =
∂c(w; q)

∂q
.
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5 Choice under Uncertainty and Risk

Uncertainty plays a major role in economic decision making. Finance is
all about handling uncertainties. Real investments, career choices, and
retirement savings decisions all involve a major element of uncertainty. Up
to now, we have talked about choices from sets of certain alternatives. In
this section, we want to expand the scope of our theory to cover uncertain
outcomes as well.

You will see a modeling strategy that may seem a bit confusing at first
sight. We expand the set over which choices are made and on which pref-
erences are formulated. We call this set the set of lotteries, and will then im-
pose assumptions beyond the standard transitivity, continuity and mono-
tonicity assumptions to develop a normatively attractive and analytically
tractable model of choice under uncertainty. But before starting this, we
discuss different interpretations we could have for uncertainty.

5.1 Uncertainty and Risk

The mathematical model for uncertainty is developed in probability the-
ory. We have a sample space Ω and a collection E of events, i.e. sets E ⊂ Ω

defined on it. A probability (measure) attaches to each E ∈ E a number
0 ≤ p(E) ≤ 1. The empty set ∅ and the whole sample space Ω are events,
and p(∅) = 0, p(Ω) = 1. E is closed under unions and intersections, i.e. if
A,B ∈ E , then A ∪B ∈ E , and A ∩B ∈ E . 12

Probability is additive in the sense that if A,B ∈ E and A∩B = ∅, then
p(A ∪ B) = p(A) + p(B).13 At this point, it is a good idea to review the ba-
sic facts of probability theory including: random variables, expectations,
independence, conditional probability, Bayes’ rule.

12For the purposes of this subsection, you can safely assume that Ω is finite and that E
is the collection of all of its subsets.

13When Ω is infinite, then a stronger form of additivity is needed to develop the theory
properly.

72



The easiest way of thinking about uncertainty for decision making is
the model of objectively given probabilities. Objective uncertainty is often
referred to as risk, while uncertainty is a term left for subjective probabil-
ities (see below). In the model of risk, a decision maker considers each
ω ∈ Ω as a priori possible and assigns an exogenously given probability
p(ω) to each sample point (and by finiteness, and additivity, these prob-
abilities determine p(E) for all events, i.e. all subsets E ∈ Ω). Our first
model develops optimal choice theory for risky lotteries, where we attach
to each ω a consequence x(ω), and derive a an expected utility representa-
tion for preferences over probabilistic consequences. An expected utility
representation constructs a utility function on consequences with the par-
ticular property that any distribution (i.e. lottery) on consequences is eval-
uated as a probability weighted average of the utilities on consequences.

It is clear that well defined exogenous probabilities do not exist for all
uncertain prospects. Even experts disagree on the distribution of Tesla’s
profit for the next quarter or the probability of Trump being elected in
November 2024 (this is written in August 2024). If we want to encompass
such subjective uncertainties, we need an altogether different setting.

Following de Finetti and Savage, we can take a revealed preference
approach to choice under uncertainty. The key object for this analysis is
the set of acts, i.e. functions f ∈ F mapping the set of states s ∈ S to conse-
quences x ∈ X so that f(s) is the consequence under act f in state s. Savage
imposed a set of axioms on the preferences on F that result in an expected
utility representation that includes a subjective probability distribution on
the states s ∈ S and a utility function on the consequences. The theory of
subjective expected utility is one of the gems of mathematical economics,
but unfortunately we do not have the time (or the pre-requisites) for a full
treatment.14. For our purposes, it is good to note that both the objective
and subjective approach leads to a mathematical theory where uncertain

14Utility Theory for Decision Making by Peter Fsihburn (1970) is an authoritative source
for this.

73



1 1

1

p1 p2

p3

Figure 8: Probabilities in R3

consequences are evaluated using an expected utility formula.

5.2 Expected Utility Theorem

A simple lottery on the (finite) set of consequencesX = {x1, ..., xK} is a non-
negative vector p in RK

+ whose coordinates sum to 1.15 The set of lotteries
is denoted by:

L = {p = (p1, ..., pK)|
K∑
i=1

pi = 1, pi ≥ 0 for all i.}

We also use the notation ∆(X) to denote the set of probabilities over a set
X so that L = ∆(X). We denote the degenerate (i.e. certain) lotteries by
δk = (0, ..., 0, 1, 0, ...0), where the only non-zero term is in the kth coordi-
nate. The degenerate lottery δk delivers consequence xk for sure. For three
consequences, you can visualize the set of lotteries as the 2-dimensional
simplex in R3 as in Figure 8.

Let ⪰ be a continuous rational preference relation on L. Since X is
finite, we can find degenerate lotteries δB such that δB ⪰ δk for all k and
δW such that δk ⪰ δW for all k.

15Please note that I use p without subscripts for the vector of probabilities. Do not
confuse this with the price vector in previous sections.
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Figure 10: Simple Lottery Induced by q ◦ p

The idea here is to use the best and worst lotteries to calibrate appro-
priate utilities for all lotteries. Before that, we must talk about compound
lotteries. By this, we simply mean lotteries over lotteries, i.e. probability
distributions over different lotteries. A compound lottery q ◦ p ∈ ∆(∆(X))

is a (random variable with finite support in ∆(X)). If we have a compound
lottery with first stage lottery q = (q1, ..., qL) and each of the second stage
lotteries pl ∈ ∆(X).

Perhaps it is easiest to explain through an example. A compound
lottery q ◦ p with q = (q1, q2, q3) = (1

6
, 1
3
, 1
2
) and p1 = (1

4
, 0, 0, 3

4
), p2 =

(0, 1
4
, 1
2
, 1
4
), p3 = (1

2
, 1
4
, 1
4
, 0)on X = {x1, x2, x3, x4} gives the final conse-

quences (also called prizes) xk with probabilities p(xk) =
∑

l=1 qlplk. So for
example prize x3 is obtained with probability p(x3) = 1

6
×0+ 1

3
× 1

2
+ 1

2
× 1

4
=

7
24
.

Or perhaps a picture may help: see figures 9 and 10.
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5.2.1 The Independence Axiom

The classic result in choice under uncertainty, the Expected Utility repre-
sentation for preferences over lotteries hinges on the following axiom. We
write αp ⊕ (1 − α)p′ for the simple lottery on X derived from the com-
pound lottery that gives lottery pwith probability α and lottery p′ with the
complementary probability (1− α).

Assumption 5.1 (Independence).
A rational preference on L satisfies the independence axiom if for all p, q, r ∈
L, and for all α ∈ [0, 1], we have

αp⊕ (1− α)r ⪰ αq ⊕ (1− α)r ⇐⇒ p ⪰ q.

The idea here is that with probability (1 − α), the compound lottery
yields the same simple lottery r in both cases. Therefore only the part
that is different should matter, i.e. the comparison for the two compound
lotteries should reduce to the comparison of p versus q. Note that this
assumption would be very restrictive (and sometimes quite strange) in
our previous sections on choice. It is hard to see why such independence
should hold if α is regarded as mixing in terms of quantities of bundles
p, q with another bundle r.

The following observation on preferences satisfying the independence
axiom is useful in what follows.

Lemma 5.2. Suppose that ⪰ satisfies the independence axiom and p ⪰ q.
Then αp⊕ (1− α)q ⪰ βp⊕ (1− β)q ⇐⇒ α ≥ β.

Exercise 5.3. Prove Lemma 5.2.

Theorem 5.4. A rational and continuous preference relation ⪰ on L sat-
isfies the independence axiom if and only if there exists a utility function
u : X → R such that

p ⪰ q ⇐⇒ U(p) =
K∑
k=1

pku(xk) ≥ U(q) =
K∑
k=1

qku(xk).
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Proof. Since X is finite, there exist some best and worst certain lotteries δB
and δW . If δB ∼ δW , all lotteries are equally good and we set u(δk) = 1 for
all k.

Suppose then that δB ≻ δW and set u(δW ) = 0 and u(δB) = 1. For each
δk, find αk such that αkδB + (1 − αk)δW ∼ δk. We know that Uk = {α ∈
[0, 1]|αδB + (1 − α)δW ⪰ δk} and Wk = {α ∈ [0, 1]|δk ⪰ αδB + (1 − α)δW}
are non-empty (by definition of δB and δW , 1 ∈ Uk and 0 ∈ Wk) and closed
(since ⪰ is continuous). By independence axiom, Uk and Wk are intervals.
Since [0, 1] is a closed connected interval, so is Ik = Uk∩Wk. Independence
axiom guarantees again that Ik is a singleton that we call αk.

We claim that for u(xk) = αk, the functionU(p) =
∑K

k=1 pku(xk) repre-
sents ⪰. Since each δk ∼ αkδB + (1− αk)δW , we can view p as a compound
lottery that reduces to a simple lottery that gives the prize δB with proba-
bility

∑K
k=1 pkαk and δW with probability (1−

∑K
k=1 pkαk). We have

K∑
k=1

pkαk δB ⊕ (1−
K∑
k=1

pkαk) δW ∼ p

⪰ q ∼
K∑
k=1

qkαk δB ⊕ (1−
K∑
k=1

qkαk) δW .

By Lemma 5.2, we have p ⪰ q ⇐⇒
∑K

k=1 pkαkδB ≥
∑K

k=1 qkαkδB.

Here is a bit of terminology. The utility function U on L is called the
von Neumann-Morgenstern utility function. The utility function u on X

is called the Bernoulli utility function. The content of the expected utility
theorem is that if the independence axiom holds, then the preference over
lotteries can be deduced from the preference over consequences by just
computing the expectation of the utilities over consequences. This is a
huge simplification of the problem.

Notice that the preference U is linear in probabilities (p1, ..., pK). This
implies that the indifference curves (for lotteries ) are parallel hyperplanes
in the simplex ∆(X). Perhaps the easiest case to visualize is with three
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Figure 11: Probability Triangle

consequences so that p = (p1, p2, 1 − p1 − p2). We can visualize this in
an equilateral triangle of height 1, where we identify the corners of the
triangle as the degenerate lotteries δk for k = 1, 2, 3.

One key difference to choice under certainty is that the utility represen-
tation is no longer purely ordinal. The following example demonstrates
this.

Example 5.5. Suppose X = {1, 2, 3} and u(x) = x. Then δ2 ∼ 1
2
δ1 ⊕ 1

2
δ3.

Consider then a strictly increasing transformation v(u(x)) = (u(x))2 = x2.
Then 1

2
v(1) + 1

2
v(3) = 1

2
× 1 + 1

2
× 9 > v(2) = 4 showing that u and v

represent different preferences.

It is clear that expected utility representations are not unique. If b > 0,
then U(p) ≥ U(q) if and only if a + bU(p) > a + bU(q). Hence U and
V = a + bU represent the same preferences. The following proposition
shows that expected utility representations are unique only up to such
transformations.

Proposition 5.6. Bernoulli utility functions u and v represent the same
preferences if and only if for all k, v(xk) = a+ bu(xk) for some b > 0.

Proof. If u and v are two Bernoulli utility functions, let U and V be the
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corresponding von Neumann-Morgenstern utility functions. The claim is
proved if we prove it for U and V .

Let α(p) solve

U(p) = α(p)U(δB) + (1− α(p))U(δW ),

so that
α(p) =

U(p)− U(δW )

U(δB)− U(δW )
.

Since V is also a representation of the same preferences, we have:

V (p) = α(p)V (δB) + (1− α(p))V (δW ).

Plugging in the value of α(p) and rearranging, we get:

V (p) = bU(p) + a,

where
b =

V (δB)− V (δW )

U(δB)− U(δW )
,

and
a = V (δW )− U(δW )

V (δB)− V (δW )

U(δB)− U(δW )
.

Exercise 5.7. Suppose a decision maker can invest her initial wealth of 1
euro in two different equities i ∈ {1, 2}. Each equity sells at 1 euro and eq-
uity i delivers xi euros with probability pi and 0 with the complementary
probability (1 − pi). Describe the possible portfolios for different invest-
ment strategies (you do not have to invest all your wealth in the assets
but just keep all of it or part of it uninvested) and compute the probabil-
ity distributions on final wealth assuming that the assets are statistically
independent.
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Another nice way of writing the expected utility formula involves a
change of variable. If X is a random variable on the real line with distri-
bution function F , then the standard way of writing the expected utility
formula is:

EU =

∫ x

x

u(x)dF (x).

If we change variables to s = F (x), we can write this formula as:

EU =

∫ 1

0

u(F−1(s))ds.

The variable s has the natural interpretation as the quantile of the distri-
bution F and we see that the expected utility formula gives an expectation
of u evaluated at a uniformly distributed random quantile. We may write
in general fX(s) = F−1(s) for the quantile function of X .

5.2.2 Some Extensions

We have assumed thus far that X is finite. For countably infinite X we
need to worry about the convergence of sums of type

∑∞
k=1 pku(xk). St.

Petersburg’s paradox is a prime example of this. We could ask the follow-
ing: how much would you pay for a gamble that pays off 2k euros with
probability 1

2k
. To get a better sense of the gamble, you can think of flip-

ping a coin to determine the winnings. Your winnings are 2 to the power
of the number of consecutive heads that you get in a sequence of coin
flips. The expected value of this gamble is infinite. Because of this, Jacob
Bernoulli (living in St. Petersburg) suggested that we should consider the
expectation of a utility function on the winnings u(xk) rather than the ex-
pected value of the winnings. If u is bounded, all sums of the type above
do converge.

The procedure for calibrating the utility function has to be modified
slightly since now there does not necessarily exist best and worst prizes.
Fortunately enough, this is not too hard. Pick two prizes x0 and x1 such
that x1 ≻ x0. Put u(x1) = 1, u(x0) = 0. For any other prize xk find αk as
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before if x1 ⪰ xk ⪰ x0. If xk ≻ x1, define αk by δ1 ∼ αkδk ⊕ (1 − αk)δ0,
and set u(xk) = 1

αk
. If x0 ≻ xk, define αk by δ0 ∼ αkδk ⊕ (1− αk)δ1, and set

u(xk) = −1−αk

αk
.

For an uncountably infinite X , lotteries must be measurable random
variables and the convergence of the integrals needed for computing ex-
pectations becomes more tricky. Again, problems can be avoided if the
lotteries are on a bounded support and the Bernoulli utility function is
continuous on the support. Many convenient settings fail these sufficient
conditions (e.g. normally distributed lotteries and exponential utilities),
but still yield well-defined expected utilities.

In these notes, we will have only parametric examples where you can
use the familiar computations from elementary (i.e. without measure the-
ory) probability. The only reason for considering such extensions is that
for random variables with continuous densities on the real line, compu-
tations become a lot easier (e.g. we can use calculus to characterize first-
order conditions).

Exercise 5.8. Consider normally distributed lotteries, x̃ ∼ N (µ, σ2) and an
exponential utility function on consequences u(x) = − 1

γ
e−γx. Compute the

expected utility for such lotteries.

If you want a more advanced treatment of the expected utility theorem,
the notes by Strzalecki (chapter 5) give a very nice treatment. The idea is
to prove first the linear form of the representations, i.e. U(λp⊕ (1− λ)r) =

λU(p)+(1−λ)U(r). The representation in this form extends nicely to much
more general spaces of lotteries.

5.2.3 Allais’ Paradox

Experimental evidence suggests that expected utility theory fails in some
treatments. Perhaps the most famous (and oldest) example of this is known
as Allais’ Paradox. Here is one version of it.
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A decision maker chooses between two lotteries p, q with prizes in x ∈
{2500, 2400, 0}. You should interpret these as monetary rewards. Lottery
p has probabilities p = (.33, .66, .01) on the three prizes while lottery q =

(0, 1, 0). Which would you choose? Why? The decision maker also chooses
between r, s on the same prizes with probabilities r = (.33, 0, .67) and s =

(0, .34, .66). What would you choose? Why?
Many decision makers say they would choose q over p to avoid the

possibility of the zero prize. At the same time, they would choose r over
s since .33 is not very different from .34 and the prize in the first case is
larger than in the second.16

Is this consistent with expected utility maximization? If you prefer q
over p, then u(2400) > .33u(2500) + .66u(2400) + .01u(0). If you prefer r
over s, then .33u(2500) + .67u(0) > .34u(2400) + .66u(0). These are clearly
inconsistent.

Let’s see if we can find a violation of the independence axiom. The first
choice is between .66(0, 1, 0)+ .34(33

34
, 0, 1

34
) and .66(0, 1, 0)+ .34(0, 1, 0). The

second is between .66(0, 0, 1) + .34(33
34
, 0, 1

34
) and .66(0, 0, 1) + .34(0, 1, 0). If

independence axiom holds, then either the first option should be chosen
in both cases or the second option should be chosen in both.

Perhaps the simplest departure from the expected utility model that
allows for the preferences as displayed in Allais’ Paradox is to relax the
independence axiom as follows.

Definition 5.9 (Betweenness). A continuous rational preference relation ⪰
satisfies betweenness if for all p, q ∈ L and for all α ∈ (0, 1):

1. If p ≻ q, then αp⊕ (1− α)q ≻ q.

2. If p ∼ q, then αp⊕ (1− α)q ∼ q.

16In order to interpret such statements, we would need a theory of salient outcomes
(zero prize) and similarity (why is .33 more similar to .34 than 2400 to 2500). Rubin-
stein (1988) and more recent approach by Bordalo, Gennaioli and Shleifer under the title
’Salience’ (e.g. Bordalo et al. (2012)) develop these ideas.
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You should observe that this gives rise to linear (and non-crossing) indif-
ference curves in the probability simplex. Dekel (1986) gave this axioma-
tization and an associated representation.

Exercise 5.10. Draw an indifference map in the two-dimensional probabil-
ity simplex that is compatible with the modal answers in Allais’ Paradox
and also with preferences satisfying Betweenness.

5.2.4 Appendix: Ambiguity

The following thought experiment is known as Ellsberg’s paradox and it
questions the existence of well-defined subjective probabilities. A decision
maker chooses between Urn 1 and Urn 2. Urn 1 contains 50 red and 50 blue
balls. Urn 2 contains x red balls and 100− x blue balls (with 0 ≤ x ≤ 100).
A ball is picked from the urn at random and the decision maker gets EUR
10 if the ball is red. In experiments, decision makers often express a strict
preference for Urn 1.

After the ball is drawn, an independent observer notes the color and
put the ball back in the urn without telling its color to the decision maker.
In the second task, the decision maker chooses again the urn and wins
EUR 10 if a blue ball is drawn. Most decision makers still express a strict
preference for Urn 1.

Do you see the paradox here? You should choose the urn with the
larger likelihood of winning. If a red ball is more likely from Urn 1 than
from Urn 2, then a blue ball should be more likely from Urn 2 (since all
balls are either red or blue).

Ellsberg and many economists after him attribute the observed behav-
ior to decision makers’ preference for well-defined odds over more am-
biguous probability assessments. The resulting theory takes one of two
possible approaches: i) abandon subjective probabilities and evaluate un-
certain prospects using Choquet’s capacities that are supermodular prob-
abilities (where for some events A,B such that A ∩ B = ∅, one can have
p(A∪B) > p(A)+p(B)). ii) Abandon the requirement of a single subjective
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probability assessment and allow for a set of priors for the decision maker
when making the choice. The notes by Strzalecki on decision theory on
the syllabus develop this theory in Chapter 10.

5.3 Monetary Payoffs and Risk

By far the most important application of choice under risk is to the case
where the consequences are monetary payoffs. This covers large parts
of financial economics, consumer behavior with savings and many other
important applications. Here, it will be convenient to take X ⊂ R, and
the idea is that x ∈ X represents a final wealth and the decision maker
has preferences over distributions of final wealth as given by the expected
utility formula. We will write F for the distribution and we allow for both
discrete, continuous and mixed distributions.

In general, we write the expected utility as the Stieltjes integral:

U(F ) =

∫
u(x)dF (x).

If the distribution is discrete with probability mass function p on discrete
values {xk}, this can be written as the familiar summation:

U(F ) =
∑
k

p(xk)u(xk).

If the probability distribution is continuous with density f , we write:

U(F ) =

∫
u(x)f(x)dx.

5.4 Risk Attitudes

Our first substantive application of the expected utility theorem is towards
understanding the decision makers’ attitudes towards risk. We start by
finding a measure in terms of certain final wealth that is considered equally
good as a risky lottery.
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Definition 5.11. The certainty equivalent c(F, u) of a lottery with distribu-
tion F for a decision maker with (Bernoulli) utility function u is defined
by

u(c(F, u)) =

∫
u(x)dF (x) (4)

We can discuss attitudes towards risk by comparing the certainty equiv-
alents of a fixed lottery under different utility functions.

Definition 5.12. A decision maker with a utility function u is said to be
risk averse if for all F ,

c(F, u) ≤
∫
xdF (x). (5)

Jensen’s inequality implies the following result on the representation
of risk averse preferences:

Proposition 5.13. A utility function u is risk averse if and only if it is con-
cave.

Risk loving attitudes are defined with the opposite inequalities.A risk
neutral decision maker is one that cares only about the expected value
of the lottery. Such an agent cannot be strictly risk averse or strictly risk
loving and therefore her Bernoulli utility function must be linear.

A natural question to ask is how risk aversion should be quantified.
If the Bernoulli utility function is twice differentiable, then you can relate
risk-aversion to negative second derivatives. Given that Bernoulli utility
functions are unique only up to affine transformations, simply looking at
the numerical value of the second derivative is not a good idea. If we
adjust this measure by the slope of the function, we get the most used
measure for risk aversion.

Definition 5.14. The Arrow-Pratt measure of absolute risk aversion, rA(x, u) of
Bernoulli utility function u at wealth level x is given by:

rA(x, u) = −u
′′(x)

u′(x)
. (6)
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The following theorem shows that rA(x, u) is a good measure of risk
aversion.

Proposition 5.15. The following are equivalent: i) rA(x, u2) ≥ rA(x, u1) for
all x.

ii) There is a concave function ψ(·) such that u2(x) = ψ(u1(x)).

iii) c(F, u2) ≤ c(F, u1) for all F (x).

Proof. We prove that i) and ii) are equivalent under the assumption that u1
and u2 are both twice differentiable (and therefore continuous). Then there
exists a twice differentiable and increasing ψ : R → R such that u2 = ψ(u1).

Differentiating by chain rule:

u′2(x) = ψ′(u1(x))u
′
1(x)),

and differentiating again gives:

u′′2(x) = ψ′(u1(x))u
′′
1(x) + ψ′′(u1(x))(u

′
1(x))

2.

Dividing both sides by u′2(x) = ψ′(u1(x))u
′
1(x) gives:

rA(x, u2) = rA(x, u1)−
ψ′′(u1(x))

ψ′(u1(x))
u′1(x).

Thus rA(x, u2) ≥ rA(x, u1) for all x if and only if ψ′′(u1) ≤ 0 for all u1 in the
domain of ψ (i.e. the range of u1).

To see the equivalence of ii) and iii) recall that:

c(F, u2) = u−1
2 (EF (u2))

= u−1
1 (ψ−1(EF (ψ(u1)))).

By Jensen’s inequality, ψ is concave if and only if EF (ψ(u1)) ≤ ψ(EF (u1))

for all F . Thus ψ is concave if and only if:

c(F, u2) = u−1
1 (ψ−1(EF (ψ(u1))))

≤ u−1
1 (ψ−1(ψ(EF (u1)))))

= u−1
1 (EF (u1)) = c(F, u1).
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A related concept is the measure of relative risk aversion.

Definition 5.16. The Arrow-Pratt measure of relative risk aversion of Bernoulli
utility function u at wealth level x is given by:

rR(x, u) = −xu
′′(x)

u′(x)
.

rR (x, u) measures the attitudes towards gambles proportional to wealth.
Weak empirical evidence suggests that people are risk averse, their abso-
lute risk aversion decreases with wealth, and their relative risk aversion
decreases or is constant with wealth.

Exercise 5.17. Define the prudence of a Bernoulli utility function u as:

P (x, u) = −u
′′′ (x)

u′′ (x)
.

In other words, P (x, u) is the risk aversion of −u′ (x) . What are the con-
ditions for decreasing absolute risk aversion and decreasing relative risk
aversion when expressed with P (x, u) and rA (x, u)?

5.4.1 Special Types of Bernoulli Utility Functions

Constant absolute risk aversion (CARA):

u (x) = a− be−γx.

Then rA (x, u) = γ for all x
Constant relative risk aversion (CRRA):

u (x) = a+ b
x1−ρ

1− ρ
for ρ ̸= 1.

Then rR (s, u) = ρ for all x.

Exercise 5.18. Show that in the limit as ρ → 1, we get u (x) → lnx. (How
do you have to specify a, b in this case?)
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Example 5.19. A strictly risk averse decision maker must allocate an amount
y between two identical statistically independent investment opportuni-
ties. Denote the random (gross) return on opportunity i by (1 + ri) and
let f (ri) denote the density function of the return. Let α be the fraction of
wealth invested in opportunity 1. The final wealth of the investor is then:

w̃ (α) = (1 + r1)αy + (1 + r2) (1− α) y.

The expected utility of the investor that follows strategy α is then (by in-
dependence):

v (α) =∫ ∫
u ((1 + r1)αy + (1 + r2) (1− α) y) f (r1) f (r2) dr1dr2.

Notice that

v′′ (α) =∫ ∫
(r1 − r2)

2 y2u′′ ((1 + r1)αy + (1 + r2) (1− α) y) f (r1) f (r2) dr1dr2 < 0

since the decision maker is strictly risk averse. Hence first order conditions
are also sufficient for maximum.

The optimal α is found by setting

v′ (α) =∫ ∫
(r1 − r2) yu

′ ((1 + r1)αy + (1 + r2) (1− α) y) f (r1) f (r2) dr1dr2 = 0.

But then we must have:∫ ∫
r1u

′ ((1 + r1)αy + (1 + r2) (1− α) y) f (r1) f (r2) dr1dr2 =∫ ∫
r2u

′ ((1 + r1)αy + (1 + r2) (1− α) y) f (r1) f (r2) dr1dr2.

Since f (r1) = f (r2) , the two sides are equal if α = 1
2
. By strict concavity,

this must be the only solution.
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Example 5.20. A risk averse decision maker currently at wealth level $290,000
turns down a bet that gives winnings $11 with probability .5 and loses $10
with probability .5 at levels of wealth, w ≤ $300, 000. How large would
the winnings have to be in a bet that loses $200 with probability .5 for the
decision maker to accept the bet.

Since we are not given the exact form of the Bernoulli utility function,
we can get at best a lower bound for the amount.

If a decision maker behaves according to expected utility theory and is
risk averse, his Bernoulli utility function, u, satisfies

u(w + 11)− u(w) < u(w)− u(w − 10).

and thus the marginal utility function mu (w) satisfies

mu(w + 11) ≤ u(w + 11)− u(w)

11

<
10

11

u (w)− u (w − 10)

10
≤ 10

11
mu (w − 10) .

Thus, marginal utility falls at a faster rate than that of a geometrical se-
quence. It is easily calculated that in order to risk $200 with probability .5,
the winnings must be at least $12, 210, 000. To get this figure, you should
evaluate u (300, 000) using the inequalities above and then you should get
an upper bound for mu (300, 000) and extrapolate under the assumption
of linear utility for w ≥ 300, 000.

Exercise 5.21. Show that CARA expected utility functions are bounded
from above and unbounded from below. Estimate the coefficient of risk
aversion for a decision maker with a CARA utility that refuses p = (.5, .5)

on X = {11,−10}. Suppose that her initial wealth is 500. Find the smallest
loss y such that a 50-50 bet on winning x or losing y is rejected for all x.

5.5 Comparing Risks

Up to now, we have been discussing properties of Bernoulli utility func-
tions that allow us to identify some decision makers as more risk-averse

89



than others. Now we change the perspective. We want to classify risks in
a way that is valid for a wide class of decision makers.

We start with a very strong notion for dominance. It applies to all
monotone increasing Bernoulli utility functions. The second class eval-
uates risks in a way that is valid for all risk-averse decision makers. We
assume that x ∈ [x, x] and that u is differentiable throughout.

5.5.1 First order stochastic dominance

For this notion, the utility functions of interest are all increasing functions,
i.e. we consider

Ω = {u (x) : u′ (x) ≥ 0} .

Definition 5.22. A distributionF1 (x) first-order stochastically dominates (FOSD)
distribution F2 (x) if all decision makers with an increasing Bernoulli util-
ity function prefer the lottery with distribution F1(x) to F2(x).

Proposition 5.23. F1(x) first-order stochastically dominates F2(x) if and
only if

F1 (x) ≤ F2 (x) for all x ∈ [x, x] .

Proof. ∫ x

x

u (x) dF1 (x)−
∫ x

x

u (x) dF2 (x)

=

∣∣∣∣∣
x

x

u(x)(F1(x)− F2(x))−
∫ x

x

u′(x)(F1(x)− F2(x))dx.

by integration by parts. The first term is 0 and the second is positive for
all u such that u′(x) ≥ 0 if and only if

F1 (x) ≤ F2 (x) for all x ∈ [x, x] .
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You should note that if two lotteries are ranked in the first-order stochas-
tic dominance order, then the dominant one is better for all decision mak-
ers with increasing preferences in prizes. This includes not only risk-
loving preferences but also many classes of non-expected utility prefer-
ences. For example cumulative prospect theory preferences discussed in
the next section fall into this class.

A final recent observation is the following. Suppose that a decision
maker chooses between two lotteries (i.e. random variables) X and Y in a
situation where she is exposed to large independent background noise Z
so that her final wealth is X + Z or Y + Z depending on her choice. Then
Mu et al. (2023) show that if EX > EY , thenX+Z first-order stochastically
dominates Y + Z. I.e. all decision makers with monotone payoffs should
choose X over Y . You should check the paper for the exact conditions of
what ’large background risk’ means in the paper.

5.5.2 Second order stochastic dominance

For this notion, the relevant class of Bernoulli utility functions is given
by Ω′ = {u (x) : u′′ (x) ≤ 0} , i.e. the comparisons should hold for all risk-
averse decision makers. Note that we are not requiring u to be increasing
here.

Definition 5.24. A distribution dF1 (x) second-order stochastically dominates
(SOSD) dF2 (x) if∫

u (x) dF1 (x) ≥
∫
u (x) dF2 (x) for all u (x) ∈ Ω′. (7)

We have the following characterization for SOSD:

Proposition 5.25. dF1 (x) second-order stochastically dominates dF2 (x) if
and only if ∫ x

x

F1 (x) dx ≤
∫ x

x

F2 (x) dx for all x ∈ [x, x],
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and ∫ x

x

F1 (x) dx ≤
∫ x

x

F2 (x) dx

.

Proof. Observe first that if F1 SOSD F2, we must have EF1x = EF2x since
linear increasing and decreasing functions are in Ω′ if F1 is to dominate F2.

Integrate both sides of 7 by parts twice, and cancel equal terms on both
sides to get:

−

∣∣∣∣∣
x

x

u′(x)

∫ x

x

F1(s)ds+

∫ x

x

u′′(x)

∫ x

x

F1(s)dsdx

≥ −

∣∣∣∣∣
x

x

u′(x)

∫ x

x

F2(s)ds+

∫ x

x

u′′(x)

∫ x

x

F2(s)dsdx.

The first terms on the two sides of the inequality are equal since EF1x =

EF2x. Since u′′ ≤ 0, the lhs is larger than the rhs for all u ∈ Ω′ if and only if∫ x

x

F1 (x) dx ≤
∫ x

x

F2 (x) dx for all x ∈ [x, x].

Rothschild and Stiglitz (1970) coined the term mean-preserving spread to
denote a distribution that is obtained from another one by splitting prob-
ability mass at any point to separate points in such a way that the mean of
the random variable remains fixed.

Another characterization of SOSD can be given in terms of the random
variables, i.e. the lotteries themselves. A lottery x̃ second-order stochasti-
cally dominates ỹ its distribution Fx second order stochastically dominates
Fy.
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Theorem 5.26. Random variable x̃ second order stochastically dominates
random variable ỹ if and only if we can write

ỹ = x̃+ z̃,

where E [z̃ |x̃ ] = 0.

We say that in this case, ỹ is x̃ plus ’noise’.

5.5.3 Illustrations

Example 5.27. Consider a maximization problem where the utility de-
pends on the realization of a random variable as well as the chosen value
of a control variable. Let u (a, x) be the utility function, where a is the con-
trol variable and x is the uncertain variable. In many applications, e.g.
when a is the level of investment in capacity, and u(a, x) is the level of out-
put at capacity a and realization x, the following assumptions are natural
to make: ua (a, x) > 0 and uaa (a, x) < 0.17 Let a denote the control variable,
and let F (x; r) be the distribution of the random variable with risk param-
eter r.Assume that higher values of r represent risks that are second-order
stochastically dominated by risks with lower r. The problem is then to

max
a

∫ 1

0

u (a, x) dF (x; r) = max
a

∫ 1

0

u (a, x) f (x; r) dx,

where f (x; r) is the density function of the random variable. The first
derivative of the expected utility from choice a is given by

v′ (a) =

∫ 1

0

ua (a, x) f (x; r) dx.

Observe that
v′′ (a) < 0 since uaa (a;x) < 0.

If we are interested in the comparative statics of the control variable in
the risk parameter, we need to apply the results that we had for second

17I am using subscripts on u to denote partial derivatives.
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order stochastic dominance above. Define a (r) to be the optimal choice
for risk level r. Then

v′ (a (r)) =

∫ 1

0

ua (a, x) f (x; r) dx = 0.

We know that if ua (a, x) is concave in x, then∫ 1

0

ua (a (r) , x) f (x; r
′) dx ≤ 0 for r′ ≥ r.

This simply reflects the fact that the expected utility for concave functions
is lower from risks that are second order stochastically dominated (i.e. the
proposition of the previous section). Since v (a) is concave, this implies
that a (r′) < a (r) . Hence the optimal action is decreasing in r. The oppo-
site conclusion follows if ua (a, x) is convex in x. To summarize, we have
shown the following proposition.

Proposition 5.28. Let the utility from action a and outcome x is given by a
function u (a, x) and the distribution of the risk is given by F (x; r) , where
r is a parameter of increasing risk in the sense of second order stochastic
dominance. The optimal choice a (r) as a function of the risk is

i) decreasing if uaxx (a, x) ≤ 0,

ii) increasing if uaxx (a, x) ≥ 0.

5.6 Applications of the Expected Utility Theorem

5.6.1 Standard Portfolio Choice

Consider a risk averse decision maker with initial wealth w0. Her decision
problem is to choose how much to invest in safe versus risky assets? We
do not allow short sales so since the decision maker does not hold assets
initially, she can only buy them. Let (1 + r) denote the riskless gross re-
turn on a safe asset, and let (1 + x̃) denote the random return on the risky
investment. Denote the amount of risky investment by 0 ≤ α ≤ w0, and
the safe investment by (w0 − α) .
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The final wealth of the decision maker is given by:

(w0 − α) (1 + r) + α (1 + x̃) = w0 (1 + r) + α (x̃− r) .

Assume that the decision maker has a strictly concave, strictly increas-
ing twice differentiable Bernoulli utility function u (w) . Her expected util-
ity from a risky investment α is given by:

v (α) = Eu (w0 (1 + r) + α (x̃− r)) .

The value of her investment v (α) is a strictly concave function of α if
Pr (x̃ = r) < 1 since

v′′ (α) = E
(
(x̃− r)2 u′′ (w0 (1 + r) + α (x̃− r))

)
.

As a result, the first-order condition for optimal α is also a sufficient con-
dition for maximum. The first order condition for interior solutions (i.e.
for solutions where 0 < α < w0) is given by:

v′ (α) = E (x̃− r)u′ (w0 (1 + r) + α (x̃− r)) = 0.

For α = 0, it must be that :

v′ (0) = E (x̃− r)u′ (w0 (1 + r)) ≤ 0.

Since u′ (w0(1 + r)) is independent of x̃, the above condition is equiva-
lent to

u′ (w0 (1 + r))E (x̃− r) ≤ 0.

Hence a necessary condition for no risky investments is that the expected
value of the investment be no larger than the safe return. This is also a
sufficient condition (exercise: why?). We conclude that all decision mak-
ers, risk averse or not, invest some positive amount in risky assets if their
expected return is larger than the safe rate. Another way of phrasing this
observation is that all expected utility decision makers are approximately
risk-neutral for small bets.
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Comparing Risk Attitudes in Portfolio Choice Consider next two risk
averse decision makers with utility functions u1and u2. Suppose that u1 is
more risk averse than u2. Then u1 (x) = ϕ (u2 (x)) for some concave func-
tion ϕ.

We want to see how the optimal portfolio choices of u1 and u2 can be
compared. Since the utility functions are assumed to be concave, the first-
order conditions are also sufficient for optimality.

Denote the optimal risky investments for the two utility functions by
α1 and α2 respectively. From the first order condition for u2, we have:

v′2 (α2) = E (x̃− r)u′2 (w0 (1 + r) + α2 (x̃− r)) = 0. (8)

To see how the optimal risky investment of u1 relates to α2,we evaluate
the derivative of v1 (·) at α = α2.

v′1 (α2) =
d

dα
Eϕ (u2 (w0 (1 + r) + α (x̃− r))) |α=α2

= E (x̃− r)ϕ′ (u2 (w0 (1 + r) + α2 (x̃− r)))u′2 (w0 (1 + r) + α2 (x̃− r)) .

Since ϕ′′ ≤ 0, we know that

(x̃− r)ϕ′ (u2 (w0 (1 + r) + α2 (x̃− r))) ≤ (x̃− r)ϕ′ (u2 (w0 (1 + r)))

for all x̃.
To see this note that for x̃ < r,

ϕ′ (u2 (w0 (1 + r) + α2 (x̃− r))) ≥ ϕ′ (u2 (w0 (1 + r))) ,

by the concavity of ϕ, and similarly for x̃ > r,

ϕ′ (u2 (w0 (1 + r) + α2 (x̃− r))) ≤ ϕ′ (u2 (w0 (1 + r))) ,

and hence the claim follows. But then we know that

v′1 (α2) ≤ E (x̃− r)ϕ′ (u2 (w0 (1 + r)))u′2 (w0 (1 + r) + α2 (x̃− r))

= ϕ′ (u2 (w0 (1 + r)))E (x̃− r)u′2 (w0 (1 + r) + α2 (x̃− r)) = 0,

where the last equality follows from 8. Thus by the concavity of v1 (α) , we
know that α1 ≤ α2.
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Proposition 5.29. If u1 is more risk averse than u2, then α1 ≤ α2 in the
standard portfolio problem.

This proposition also yields an immediate corollary for risky invest-
ment as a function of initial wealth.

Corollary 5.30. If u satisfies decreasing absolute risk aversion, then α (w0) ≤
α (w′

0) whenever w0 < w′
0.

Proof. Take u2 (z) = u (z) and u1 (z) = u (z − k) and apply the previous
theorem.

5.6.2 Consumption and Savings

We start with the simplest deterministic two-period model, and derive
conclusions for optimal savings and consumption. We assume additively
separable utility function over the two periods. In other words, the con-
sumer has a separate Bernoulli utility function for consumption in each
period t = 0, 1.

The consumer receives wealth w0 and w1 respectively in the two peri-
ods. She can borrow and lend as she wishes at the risk free rate r. If we let
s denote the savings by the consumer, then her optimization problem can
be written as

max
s

u0 (w0 − s) + u1 (w1 + s (1 + r)) .

Observe that we can allow for negative saving (i.e. borrowing) in this
model, but we require that consumption be positive in both periods (i.e.
s ≤ w0). Assume throughout that ut (·) are strictly concave and twice con-
tinuously differentiable for t = 0, 1.

Hence if we let

v (s) = u0 (w0 − s) + u1 (w1 + s (1 + r)) ,

we see immediately that v′′ (s) < 0. This allows us again to locate optimal
savings levels from the first order conditions.
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The optimal level of savings s∗ is characterized by

v′ (s∗) = −u′0 (w0 − s∗) + (1 + r)u′1 (w1 + s∗ (1 + r)) = 0.

If u0 = u1 = u and r = 0, we see the most clearly how savings are used
to smooth consumption across periods. From

u′ (w0 − s∗) = u′ (w1 + s∗) ,

we conclude by the strict concavity of u that

w0 − s∗ = w1 + s∗.

Hence the consumption levels in the two periods are identical.The other
main motive of saving is to increase wealth. This effect can obviously only
be seen when r > 0. Again in the case where u0 = u1 = u, we get:

u′ (w0 − s∗) = (1 + r)u′ (w1 + s∗ (1 + r)) .

By the concavity of u, we see that consumption in the second period is
larger (since the marginal utility is lower) than in the first period. Hence
the consumer is willing to sacrifice some of the consumption smoothing
for increases in wealth.

Finally, we can totally differentiate the first-order condition with re-
spect to s and wi to get

ds∗

dw0

=
u′′0 (w0 − s∗)[

u′′0 (w0 − s∗) + (1 + r)2 u′′1 (w1 + s∗ (1 + r))
] > 0,

ds∗

dw1

=
−u′′1 (w1 + s∗ (1 + r)) (1 + r)[

u′′0 (w0 − s∗) + (1 + r)2 u′′1 (w1 + s∗ (1 + r))
] < 0.

Hence an increase in the first period income increases savings, and an
increase in the second period income decreases savings. With these pre-
liminaries in place, we can start the analysis of the optimal savings prob-
lem in a world of uncertainty.

The first question that we ask is whether the optimal savings are larger
in a model where the second period income is random than in the deter-
ministic model.
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Definition 5.31. A utility function is prudent if adding an uninsurable zero
mean risk to the second period income increases the savings.

To characterize prudent utility functions, let w̃1 = w1 + x̃, where x̃ is
assumed to be uninsurable and Ex̃ = 0. Denote the new expected utility
from savings s by:

V (s) = u0 (w0 − s) + Eu1 (w1 + s (1 + r) + x̃) .

We note that as before, V (s) inherits the curvature of the ui functions.
We analyze comparative static questions by evaluating the derivative of
V (s) at point s∗ such that v′ (s∗) = 0, i.e. at the optimal savings level of the
deterministic model.

Observe that V ′ (s∗) ≥ 0 if

Eu′1 (w1 + s∗ (1 + r) + x̃) ≥ u′1 (w1 + s∗ (1 + r)) . (9)

Notice that on the left hand side of the inequality, we have the expected
utility from a random variable. On the right hand side, we have the utility
from the expected value of the random variable.

This is exactly the definition of a risk loving utility function since w1

and x̃ are arbitrary. As risk loving functions are convex, we deduce that 9
holds for all w1 and x̃ if and only if u′1 is convex. Hence we have proved
the following proposition.

Proposition 5.32. A utility function is prudent if and only if u′1 is convex.

From this point on, we could develop a theory for comparing prudence
of different individuals or the prudence of a given individual at various
wealth levels. Much of this theory has been done by Miles Kimball, and
the central concept for the analysis is the coefficient of absolute prudence:

P (w) =
−u′′′ (w)
u′′ (w)

.
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We conclude this section on precautionary savings by recalling the
derivation for decreasing absolute risk aversion from an exercise in the
previous section:

d

dw
rA (w) = rA (w)

[
rA (w)− P (w)

]
.

Hence there are two arguments for believing in the prevalence of prudent
utility functions. First of all, there is direct econometric evidence on the
savings behavior of individuals with various degrees of uninsurable risk
positions. Second, there is overwhelming empirical support for decreas-
ing absolute risk aversion. As the formula above indicates, DARA is only
possible for prudent utility functions.

5.7 Appendix: Blackwell’s Theorem

Consider the single-agent decision problem, where the agent chooses the
optimal action a ∈ A to maximize her expected utility. The utility depends
on the chosen action and on the state of nature θ ∈ Θ = {θ1, ..., θK} so that
the optimal action under full information depends on the state. Assume
also that the (state dependent) utility function u(a, θ) is continuous in a for
all θ and A is compact. Let pk denote the prior probability of the event
{θ = θk}, and p = (p1, ..., pK). We assume w.l.o.g. that pk > 0 for all k. The
decision maker’s problem is then to

max
a

N∑
k=1

pku(a, θk).

Let a(p) denote the maximizer in the above program, and let

V (p) =
N∑
k=1

pku(a(p), θk)

be the value function of the program. As we argued in Section 3.4, V (p) is
convex in p.
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If there are two states, then p ∈ [0, 1]. Therefore, SOSD (with signs
changed since we are dealing now with convex functions) gives a char-
acterization for distributions on probabilities that are good for the deci-
sion maker. A statistical experiment induces a distribution F on prob-
ability distributions that must satisfy the Bayes’ plausibility constraint:
EF (p

′) = p, where p′ is a posterior induced by the experiment. We can
ask when experiment with distribution F is preferred to an experiment G
for all decision makers (i.e. for all utility functions) and for all priors.

The best the decision maker could hope for is to know the true state
resulting in p′ ∈ {0, 1}. Clearly the perfectly revealing statistical experi-
ment is the best for the decision maker (since then she can take optimal ac-
tions state by state). Loosely speaking, an experiment is a random variable
whose outcome is correlated with the true state of the world. After seeing
the outcome in the experiment, the decision maker updates her beliefs on
the state and then chooses the optimal action. The above reasoning tells
us that one experiment is better than a second experiment if the posterior
belief resulting from the first is second-order stochastically dominated by
the belief resulting from the second. Or to put it slightly differently, if the
posterior from the first is a mean preserving spread of the posterior from
the second.

In future courses on Economics of Information, we will see Blackwell’s
theorem in action in more general settings.
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6 Advanced Topics

6.1 Probability Weighting

There is a lot of experimental evidence that decision makers do not take
probabilities at face values but interpret them subjectively. In particular,
there is evidence that decision makers overweight small probabilities and
underweight high probabilities. How could one model this?

A naive approach to this would be to just distort the probabilities in
the Expected Utility formula by some function ψ : [0, 1] → [0, 1] so that we
would have:

EU =
∑
k

ψ(p(xk))u(xk).

The problem with this formulation is that the distorted ψ(p(xk)) do not
necessarily sum up to 1. This leads to undesirable properties for the dis-
torted formula. For example, such preferences do not satisfy monotonicity
in first-order stochastic dominance order on risks (even for increasing u

and ψ).
To avoid such problems, a different approach is needed. Even though

the following treatment is not the original one given by Kahnemann and
Tversky (1979) or Quiggin (1982), it is perhaps the easiest to digest. Recall
the alternative formulation of the expected utility formula in terms of the
quantiles:

EFU =

∫ 1

0

u(F−1(s)ds =

∫ 1

0

u(fX(s))ds,

where X ∼ F (·), and fX(s) = F−1(s). This formulation gives equal weight
to all quantiles of the random variable X . We can distort the probabilities
by shifting to another probability measure π(s) on [0, 1] to get the rank-
dependent utility formula with distortion function π:∫ 1

0

u(fX(s))dπ(s).
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A typical finding in experimental studies trying to estimate the probability
distortion function is that it is concave for small s and convex for large
s. This corresponds to the exaggerating the importance of events with a
small probability and downplaying the value from probable events.18 If
you take the distortion to be the point mass δ0.05 = π, then you get the
value at risk (VaR) evaluation that is used in many financial regulatory
settings. Convex probability weighting functions help explain the choices
leading to Allais’ Paradox.

There are a few axiomatizations of preferences leading to the rank-
dependent utility formula. Perhaps the most used one is by Yaari (1987)
that results in a linear u combined with the probability weighting. The key
axiom in this approach is an independence axiom, but now stated in terms
of the quantile functions. I should note that Yaari’s formulation has been
recently used very successfully in economic applications to insurance mar-
kets and to screening. We saw in the example on standard portfolio choice
that decision makers with (differentiable) expected utility preferences are
approximately risk-neutral for small gambles. Yaari’s preferences allow
for first-order risk-aversion (for EU, risk-aversion is only reflected in the
second-order term of the Taylor approximation of u). This can be viewed
as a positive feature of Yaari’s model.

On the negative side, the lack of local risk-neutrality implies that if
π(s) ̸= s, then one can always find small negative expected value gam-
bles that the decision makers would accept making them susceptible for
money-pump arguments. See Ebert and Strack (2015).

6.2 Choosing Menus

Kreps (1979) proposed a model where the preferences of a decision maker
are on menus of lotteries (i.e. sets of lotteries) rather than just on individ-

18In the applied literature on risky choice, a recurring empirical observation is the
longshot-favorite bias in betting. On the race-track, favorites have a higher actuarial rate
of return than longshots.
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ual lotteries. His motivation was to analyze issues such as preference for
flexibility. If some future circumstances are unknown at an initial stage, it
may be a good idea to have many possible choices at a future stage when
uncertainty has been resolved.

Kreps modeled the situation as follows. There is a set of possible states
S in period t = 1 and at t = 0, you have a preference for choice menus of
alternatives for period t = 1. A simple example would be that in t = 0,
you need to pack either rubber boots or sandals. The state would be the
weather in t = 1: either rain or shine. If you do not know s ∈ S, you
might be indifferent between boots and sandals, but have a preference for
the menu containing both boots and sandals.

Let A1, B1, C1, ... ⊂ X1 denote the menus for period t = 1 containing
objects x1 ∈ X1. Let p(s) be the probability assignment for each s ∈ S.
The t = 0 preferences ⪰0 have an option value representation u0 if there is a
state-dependent utility function u1 : X1×S → R such that for all A1 ⊂ X1:

u0(A1) =
∑
s∈S

p(s) max
x1∈A1

u1(x1, s).

Kreps showed that the preference ⪰0 has an option value representa-
tion u0 if and only if ⪰0 satisfies the following two axioms.

Axiom 6.1 (Preference for flexibility).
If B1 ⊂ A1, then A1 ⪰0 B1.

Axiom 6.2 (Modularity).
If A1 ∼0 A1 ∪B1 then for all C1, we have A1 ∪ C1 ∼0 A1 ∪B1 ∪ C1.

If one wants to extend Kreps’ model to include lotteries in the choice
set, then one must impose the independence axiom and a continuity axiom
to get the equivalent representation. While this is a nice theorem, it is not
really that great as a representation since it only guarantees the existence of
a state-dependent utility and utilities of this form are not easy to identify.

Gul and Pesendorfer (2001) took the opposite view on added options.
Rather than flexibility, they wanted to model temptation and the related
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desire to commitment. Even if you end up choosing a healthy option on a
menu in a restaurant, you may suffer disutility if you have to refuse tempt-
ing less healthy items. Because of this consideration, a smaller menu might
sometimes be preferable to a larger one. Their construction is directly in
terms of menus of lotteries so a continuity axiom on the preferences and
the independence axiom are assumed throughout. The substantive axiom
in Gul and Pesendorfer (2001) that yields a very nice representation is the
following.

Axiom 6.3 (Set Betweenness).
A1 ⪰0 B1 implies A1 ⪰0 A1 ∪B1 ⪰0 B1.

Theorem 6.4. The rational preference ⪰0 on menus satisfies Independence,
Continuity and Set Betweenness if and only if there is a representation u, v:

u0(A1) = max
x1∈A1

u(x1) + v(x1)− max
y1∈A1

v(y1).

The representation here is both very tight (just two Bernoulli functions)
and yields a nice representation. u(x1) is the final utility resulting from
the choice x1 while maxy1∈A1 v(y1) − v(x1) denotes the loss in utility from
having to refuse the most tempting option y1.

Gul and Pesendorfer (2004) extend this model to a dynamic decision
making framework that allows them to discuss many economic problem
including the savings problems that have motivated much of the literature
on commitment and temptation.

6.3 Behavioral Models: Time-Inconsistent Preferences, Ref-
erence Dependent Preferences

6.3.1 Time-Inconsistent Preferences

In Behavioral Economics, models of rational decision making have been
augmented by additional psychological considerations to expand the scope
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of the theories. A prime example of this is the theory of time-inconsistent
decision making.

Key ideas in this literature are the following: the present has a height-
ened importance in the decision making process. Today versus tomorrow
is a different trade-off than 30 days from now versus 31 days from now.
This leads to a desire to have pleasant experiences right away and to de-
lay unpleasant ones. A prime example of this is procrastination, i.e. the
tendency to postpone boring duties. Time-inconsistency shows up in the
following thought experiment. Would you do a necessary unpleasant task
right away rather than let it linger for two weeks. Maybe it would be better
to do it right away, but even better to do it tomorrow. If a decision maker
is not aware of her future tendency to reason in the same way tomorrow
as she does today, she may procrastinate with the task today in the hopes
that it will be done tomorrow. But once tomorrow is here, the reasoning
process will be the same again and the task will be kicked further into the
future.

The most common way of modeling such preferences is to have an
exponential discount factor δ applied as in the time consistent decision
models, and an additional factor β applied uniformly (not exponentially)
to all future periods. In this β − δ framework, factor β captures the present
bias that leads to inconsistent choice.

Example 6.5. You have money for exactly 1 movie ticket and 4 days over
which you might use it. The utilities from seeing the movies (on the date
of seeing it) are u1 = 2, u2 = 3, u3 = 5, u4 = 9. At each t, you decide which
t′ ≥ t to choose for you movie. Suppose δ = 1 (since the time delay is
small) and β = 1

2
so that the present bias is important. If you are unaware

of your time-inconsistency, you decide in t = 1 to wait until t = 4 since
9
2
> 2. You do the same in t = 2, but in t = 3 you choose to go to the movie

since 9
2
< 5. If you are aware of your inconsistency, you realize that in

t = 3, you will not wait. Therefore in t = 2 you will not wait either (since
3 > 5

2
) and therefore in t = 1 you go to the movie right away. We conclude

106



that being sophisticated about your own future period will not necessarily
help.

Prime examples of applications for time-inconsistent preferences are:
i) Commitment to savings behavior (I would like to save for retirement,
but I am afraid that if I leave money in my bank account, I will use it
tomorrow for a luxury vacation. As a result, I commit to an account with
no withdrawal possibilities.) ii) Choosing a restaurant without tempting
options. iii) Gym membership with the idea of committing to exercising
more.

In order to have a proper treatment of this topic, we should really
frame the model as a game between current self and future selves. In this
course, we will not deal with game-theoretic models. Note that Gul and
Pesendorfer (2001) presented in the previous section gets at the same eco-
nomic questions within a single decision maker framework.

6.3.2 Reference-dependent Utility

One of the key elements in Kahneman and Tversky’s Prospect Theory is
the idea that losses are more important than winnings to decision makers
in risky situations. In other words, your current wealth is a reference point
and you compare any lotteries against this reference point with different
weightings for losses and gains.

It is not clear what the appropriate reference point should be in all
cases, and how it should depend on the actions chosen by the decision
maker. Köszegi and Rabin (2007) formalize decision making with endoge-
nous reference points. The idea is the following: You choose amongst a
set of lotteries p, q, r, s, .... If p is your tentative choice, then you evaluate
gains and losses from other lotteries relative to p. Your actual choice is any
lottery with the property that it performs at least as well as any other lot-
tery when compared to itself. Again this is really a game-theoretic notion
of equilibrium determination for a reference point and choice.
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This game-theoretic notion of reference dependent choice has a tight
connection to rank-dependent utility models as explained in Masatlioglu
and Raymond (2016).

6.4 Stochastic Choice

In Section 1, we discussed the possibility of having choice correspondences
over choice sets A ∈ X rather than choice functions where the decision
maker chooses a subset from the available options. One way to interpret
choice correspondences is that it reports for each choice set those items
that are chosen with a positive probability. Stochastic choice is the part of
choice theory that focuses on this interpretation.

The central object of study in stochastic choice is the stochastic choice
function ρ(x,A) that gives the probability at which x is chosen from choice
set A for each x ∈ A and all A. If A has N elements, we can view ρ(·, A)
as a probability vector, i.e. an element in the N − 1-dimensional simplex.
These are the probabilities that an outsider analyst would assign to choices
made by the decision maker. The true choice may be deterministic, but
dependent on factors not observable to the analyst.

There are a number of reasons to study random choice. Individual
choice behavior appears to be stochastic in experiments (see Strzalecki’s
Stochastic Choice Theory Section 1.3 for some references). Population
level heterogeneity is reflected in fractions of population choosing differ-
ent options and these fractions can be interpreted as the choice probabil-
ities. Other reasons include learning, direction of attention in a random
manner, errors in choices and deliberate randomizations. By far the most
widely studied class of models is the random utility model where each indi-
vidual decision maker is subject to a random utility shock.19

In this approach, utility is a random vector on a probability space (Ω, (F ),P),
i.e. we write Ũ : Ω → RX , and we say that the decision maker chooses

19There are a number of ways to formalize the random utility model, but this is enough
for our purposes here.
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x ∈ A whenever Ũx(ω) > Ũy(ω) for all y ̸= x ∈ A. We write the event that
x is chosen in A as:

c(x,A) = {ω|Ũx(ω) > Ũy(ω) for all y ̸= x ∈ A}.

Definition 6.6. We say that ρ(x,A) has a random utility representation if
there exists a random variable Ũ : Ω → RX such that ρ(x,A) = P(c(x,A)
for all A ⊂ X and all x ∈ A.

The simplest random utility model is the additive random utility model
ARU where the decision maker maximizes Ũ(x) = v(x) + ϵ̃(x). Here v is a
deterministic base utility function and ϵ̃ is a random perturbation. The key
is that while ϵ̃ is observable to the decision maker, it is not observable to the
analyst. As long asX is finite, there is no loss of generality in concentrating
on ARU rather than more general random utility models (i.e. the same
stochastic choice functions can be rationalized in both approaches).20

ARU with a particular error term distribution is the work horse of dis-
crete choice econometrics. The logit-model results from assuming that ϵ̃(x)
are i.i.d. Type I Extreme Value random variables (also known as the Gum-
bel distribution). This is the most commonly used formulation in empir-
ical IO, consumer theory etc. Probit results from Normally distributed
error terms. Versions of ARU have also been used in game theory to rep-
resent smooth best responses.

It is normally assumed that ρ(x,A) > 0 for all x ∈ A. This is not partic-
ularly restrictive and in any case, this assumption would be impossible to
falsify in a finite sample. The main axiom in stochastic choice is regularity.

Axiom 6.7 (Regularity). The stochastic choice function ρ(x,A) is regular if
A ⊂ B implies that ρ(x,A) ≥ ρ(x,B).

Note that this has a resemblance to Sen’s α in the deterministic choice
theory. Block and Marschak showed that if ρ(x,A) has a random utility

20This is true only when the utility functions are chosen in a flexible manner. If the
utility functions are restricted to a parametric class, the two approaches differ.
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representation, then it is regular. The converse is true only if X has at
most three elements.

Even though regularity seems a natural axiom to impose, there are rea-
sons why it might fail. Choice overload may lead to an overall smaller
probability of choosing anything. Decoy altenatives may boost the proba-
bility of a given alternative to be chosen just like in the deterministic choice
part.

The logit or Luce model yields a very tractable formula for the choice
probabilities:

ρ(x,A) =
ev(x)∑
y∈A e

v(y)
.

This formulation is great for its simplicity, but leads to problems. An old
observation is that by splitting an alternative into two equivalent parts, the
probability of choice changes in Luce’s formula (train vs bus is different
from train vs red bus vs blue bus, and this is not plausible).

The remedies for this include nested logit models where the sequence
of decisions made by the decision maker is formulated explicitly (so that
train vs bus is chosen first and blue bus versus red bus in the second stage).
Obviously such procedures are quite context-dependent.

The book by Stralecki on the syllabus is an excellent and very accessi-
ble introduction to a wide variety of stochastic choice models. Any student
interested in pursuing connections between theory and empirical work is
encouraged to study this topic (for IO, experimental, marketing applica-
tions etc.).
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