
Assignment 4 
 

1. Traffic is modelled as an inhomogeneous Poisson process at a crossing where vehicles 
arrive at rates that depend on the time of the day. The rates are measured averages over 
time-intervals as follows: 

 

Time-Interval 𝝀(𝒕) (cars per minute) 

00:00 – 06:00 0.2 

06:00 – 08:00 0.9 

08:00 – 12:00 0.5 

12:00 – 15:00 0.6 

15:00 – 17:00 1.0 

17:00 – 19:00 0.6 

19:00 – 24:00 0.5 

 
Implement the two methods that will give the event times in order: the revised method and the 
thinning approach. Simulate the described arrival process using these methods. 
 
Using both methods, simulate 1000 Poisson processes. Present the results separately, first for the 
revised method under 1. a) and second for the thinning approach under 1. b). 
(i) (w=2) For each such simulation, plot the average number of cars that arrived at (and obviously 
left) the crossing per minute over the period of 24 hours. 
(ii) (w=2) Also plot the cumulative number of cars that arrived per minute over the period of 24 
hours. As numerical results,  
(iii) (w=1) print the average number of cars that arrived in one day and 
(iv) (w=1) the average time when the first car arrived.  
 
By the above plots and numbers you can check that your algorithms simulating the 
inhomogeneous Poisson process work right, since you know what you should get. 
 
Please note that in the revised algorithm you need to sample the different numbers of events for 
the different realisations of the Poisson process (the first row in the pseudo algorithm: 



𝑚	~	𝑃𝑜(𝑈!𝑇). You can use your own algorithm for generating numbers from the Poisson 
distribution or use the library function numpy.random.poisson 
 
2. In Assignment 3 you implemented and simulated homogeneous and inhomogeneous Poisson 
process of radioactive decay by applying inversion distribution method to inter-event time 
distribution. Here you will use the Poisson distribution for the number of events. Implement both 
processes by drawing samples from a Poisson distribution to obtain number of events in 
appropriate time intervals. Use ∆𝑡 = 0.01 as the magnitude of one time step. So, elapsed time = 
steps × ∆𝑡. The number of nuclei is initially 𝑁0 = 10	000. The decay (fission) rate for one nucleus 
is  𝜆# = 0.3 per second. (Note that this  𝜆#  value is different from what was used in Assignment 3.) 
 

a) Consider an ensemble of 𝑁0 = 10	000 nuclei, where the number of undecayed nuclei is 
kept constant; in other words, every time a nucleus decays it is replaced by an 
undecayed nucleus. The differential equation for the process is $%

$&
=	−𝜆#𝑁'. 

Accordingly, the constant decay rate is 𝜆 = 𝜆#𝑁'. Draw samples from the Poisson 
distribution by using numpy.random.poisson. This is the number of events in a time 
interval. 
(i) (w=2) Implement the algorithm. Indicate clearly the different parts and functions. 
(ii) (w=2) Compute mean values by averaging over 1000 simulations of the following: 

The half time, i.e., the time it takes for 𝑁0/2 nuclei to decay, and the variance of this 
half time. 

 
b) Next, consider an ensemble of 𝑁0 = 10	000 nuclei, where decayed nuclei are not 

replaced. The process becomes inhomogeneous as the decay rate will depend on time. 
The differential equation describing this process reads as $%

$&
=	−𝜆#𝑁(𝑡), where the 

number of undecayed nuclei decreases exponentially, 𝑁(𝑡) = 𝑁'𝑒(!!&. The inter-event 
times are different from the homogeneous case in a). Accordingly, you need to sample 
number of events in appropriate time interval using numpy.random.poisson. 
(i) (w=2) Implement the algorithm. Indicate clearly the different parts and functions. 
(ii) (w=2) Compute mean values by averaging over 1000 simulations of the following: 

The half time, i.e., the time it takes for 𝑁0/2 nuclei to decay, and the variance of this 
half time. 

 
Note. Above, 𝑁 = 〈𝑁〉, i.e. an ensemble average. Likewise, 𝑁(𝑡) = 〈𝑁(𝑡)〉, i.e. an ensemble 
average at time 𝑡. 


