
70

Lost in 
Parameter 
sPace?

Fabian Scheurer
Hanno Stehling



71

Rather than eradicating the need for mathematics in architectural 
practice, computation has intensified it. As Fabian Scheurer 
and Hanno Stehling of designtoproduction explain, the uneven 
flow of a complex design from computer-aided design (CAD) to 
computer-aided engineering (CAE) and through to computer-aided 
manufacturing (CAM) necessitates an understanding of abstract 
mathematical concepts that facilitate communication, precision and 
an accurate assessment of quality throughout the process.

Figure 1. Shigeru Ban, Centre Pompidou, Metz, France, 2010
The roof surface as triangle mesh (left) and as NURBS 
surface (right). Only the latter allowed for the fabrication of 
smoothly curved girders, but its definition took some help from 
specialists who usually work for the automotive industry.



72

A few years ago the introduction of ever more powerful 
computer-aided design (CAD) systems seemed to 
have almost eradicated mathematics from architectural 
practice. At least when looking at the curricula of 
architecture schools one could have the impression that 
this subject – anyway unloved due to its ‘uncreative’ 
formal rigidity – was happily replaced by CAD courses 
and the belief that somewhere in the background the 
software would take care of all the calculations. Under 
this cover, even highly sophisticated mathematical 
concepts like non-uniform rational b-splines (NURBS) 
managed to sneak into architecture, understood by very 
few but happily applied nevertheless. 

Recently this seems to have changed again. 
Architects have suddenly shown an increasing interest 
in mathematics1 and its abstract concepts. Surprisingly 
at first glance, the very same process of digitalisation 
that once marginalised mathematics in architecture 
now actuates its re-establishment. On closer inspection, 
however, this is a consequent progression: it turned out 
that the complex shapes unleashed by digital design tools 
did not smoothly flow down the process chain from CAD 
to computer-aided engineering (CAE) to computer-aided 
manufacturing (CAM) until automatically materialising 
inside some digital fabrication machines, and that the 
implementation of a passably seamless digital workflow 
requires more than the flick of a button in the designer’s 
CAD software. To understand why this is the case we 
need to take a look at mathematics and the closely related 
theory of computation.

First of all, architectural design is a process of 
communication. It is a long way from the designer’s 
initial idea to the built result, necessitating means 
to describe a design in ways that give sufficient and 
unambiguous instructions to the builders. 

Traditionally and despite all digitalisation, this is 
still achieved mainly by 2-D drawings. Mathematically 
speaking, the projection of a three-dimensional object 
onto a two-dimensional sheet of paper is a mapping 
transformation that must be set up carefully in order 
to deliver not only correct but also meaningful results. 
Ideally, a projection plane is defined so that most of the 
object’s edges keep their length and inscribed angles, 
allowing measurements in the drawing to give valid 
information about the real thing. 

Unfortunately, such a projection plane does not 
now exist for a complex shape with no planar faces. 
Subsequently, any 2-D plan might transport parts of the 
topology (how certain features are related to each other) 
but no reliable metrics any more (how far those features 
are from each other). This loss of information, in the end, 
makes it impossible to reconstruct the 3-D object based 
on a set of 2-D drawings – the traditional language of 
architecture becomes insufficient.

Luckily, CAD systems have evolved from a stage 
where they merely were simulating 2-D drawing boards. 

Nowadays CAD models can – contrary to a sheet of 
paper – unambiguously store the actual 3-D information 
of an object. Consistent 2-D plans can then be derived 
from those 3-D models on request. So complex designs 
consequently have to be modelled in three dimensions 
before they are flattened to drawings; the model becomes 
the core of communication.

Abstraction
A model, by definition, is always an abstraction of reality. 
Building a model means reducing the infinite complexity 
of the real world to a level where it can be described with 
manageable effort. What is obvious in the workshop of 
a model builder sometimes gets forgotten when almost 
infinite digital storage space is at hand: a perfect model 
does not contain as much information as possible, but as 
little as necessary to describe the properties of an object 
unambiguously. Any extra bit would be meaningless for 
the given purpose and only impede comprehensibility. 
In information theory, this is known as ‘Kolmogorov 
complexity’ or ‘descriptive complexity’: the complexity of 
an object is defined by the length of the shortest possible 
description. While modelling starts with gathering data, 
it is far more important to then throw away everything 
that turns out to be superficial. This task requires quite 
some (human!) intelligence, because it involves finding 
patterns and defining general cases.

This is easily done for planar faces and regular 
grids: details can be defined once and then multiplied; 
local changes do not induce re-evaluations of the 
whole structure. But again, the fun stops as soon as the 
shapes get curvy.

Abstracting Shape
A straightforward approach to describe a non-planar 
shape would be to define a large number of points – 
for instance by laser-scanning a physical model – and 
connect them by straight lines to form a mesh. Meshes 
are an easy way to define complex shapes, but they have a 
severe disadvantage: the planar facets of a mesh can only 
approximate a curved shape, which is usually acceptable 
for rendering an image, but certainly is not for digital 
fabrication as the approximation errors quickly exceed 
the machine precision (typically some 1/10 millimetre 
for large-scale fabrication equipment) and are duly and 
visibly reproduced.

Fortunately, there is a mathematical model for 
precisely describing curved surfaces. Developed in the 
1950s and 1960s, the computational complexity of 
NURBS meant it took almost 50 years until they started 
their impressive career in architecture. NURBS allow 
the precise definition of complex shapes through control 
points. When used properly, significantly fewer control 
points are needed for a NURBS surface than vertices for 
a similar mesh, while at the same time NURBS allow 
the precise calculation of all in-between points on the 



73

Figure 2. Planar projection
Simple 3-D objects with planar faces (left) can be unambiguously described 
by a small set of 2-D plans preserving lengths and angles for all edges 
running parallel to the projection planes. For curved surfaces (right), this 
approach fails because no projection plane would preserve the metrics.

Figure 3. Abstracting a circle
A circle is unambiguously defined by only three points. After discovering 
the shape behind those 30 points we can throw away 27 of them (90 per 
cent of the data) and still have the same figure defined in the drawing. 
Additionally, the geometric definition of a circle lets us now identify the 
exact location of infinitely many more points than the 30 we started with.

Figure 4. Shigeru Ban, Centre Pompidou, Metz, France, 2010
The roof during erection. The structure is composed of six 
layers of double-curved girders that were precisely pre-cut on a 
computer-controlled machine.



74

Figure 5. ALA Arkitekter AS, Kilden Performing Arts Center, 
Kristiansand, Norway, due for completion 2012
The facade towards the waterfront is clad by straight oak 
boards, only twisted around their longitudinal axis. 

Figure 6. ALA Arkitekter AS, Kilden Performing Arts Center, 
Kristiansand, Norway, due for completion 2012
The facade’s shape is defined by a ruled surface with a straight 
upper and a curved lower edge. For the intended prefabrication 
concept all generatrices had to be aligned with the building axes, a 
demand that could not be met with the default ‘loft’ method found 
in standard CAD packages (left), but needed a custom NURBS-
definition (right).



75

surface. In this respect, a mesh can be abstracted by a 
NURBS surface like a polygon can be abstracted by 
a circle. But finding a proper NURBS representation 
for a given mesh or point-cloud requires quite a bit of 
knowledge of the underlying mathematical methods.

So it is more efficient to work with NURBS from 
the beginning, which is exactly what modern 3-D 
modelling software offers. But modelling a free-form 
surface means more than just tweaking control points; 
in order to come up with something buildable in 
the end, it means understanding the mathematical 
concepts behind those surfaces and relating them to 
the material world.

Abstracting Material
Curved surfaces have many geometrical properties 
that directly influence the options to actually build 
them (like developability and curvature radii). Most 
CAD programs can visualise those surface properties, 
but the designer has to interpret the colourful images 
and either match the design to the available material 
or find a suitable material for the given design. 
Speaking from experience, the latter approach is 
chosen far too often, frequently resulting in awkward 
and inefficient solutions. 

For the development of smart solutions, the 
properties of both shape and material have to be known 
in detail. And, in order to precisely describe them in 
a 3-D model, the mathematics behind their physical 
behaviour have to be known too. If, for example, a curved 
surface is to be clad with thin strips of wood, it is easy to 
map a ‘pinstripe’ texture to the respective NURBS model 
and render a realistic looking but physically wrong image. 
In order to find out what really happens, one needs to 
base the stripe pattern on the bending characteristics of 
real-world wood strips. Only with this knowledge is it 
possible to create a valid geometry for all the slats on the 
surface and tell a fabricator how many to order and how 
to pre-cut them. Also, it enables the designer to optimise 
both surface and pattern for fabrication as well as for 
visual impression.

Abstracting Detail
Architectural design does not stop at defining an overall 
shape; a large number of components have to be joined 
to create a building. And, as soon as the underlying grid 
becomes non-regular, both components and joints must 
be adjusted to the geometrical situation at every grid 
position, rendering every piece unique. To save designers 
from manually modelling thousands of components, 
the concept of ‘parametric modelling’ was introduced: 
instead of describing the final result as a model, the 
process of modelling itself is described. A sequence of 
instructions (an algorithm) generates output (a detailed 
model) based on input (a set of parameters). By varying 
the input values, different output can be generated.

Abstraction in this context means to systematically 
develop a general solution suiting all individual 
components. This usually starts with finding the 
extreme cases – for example, the joints with extreme 
angles or the members with highest loads – and 
developing a parametric solution that can handle 
those as well as all intermediate cases. But since 
the (conflicting) requirements usually define a 
multidimensional solution space it is not always obvious 
whether all occurring cases are within the boundaries. 
Verifying the validity of a parametric solution might 
still require testing every single case. So, the challenge 
of building a parametric model is to untangle the 
interdependencies created by different requirements 
and find a set of rules that is as simple as possible 
while remaining flexible enough to accommodate every 
occurring case. In other words: to pinpoint the view to 
the exact level of abstraction where no important point 
is lost and no one gets distracted by unnecessary detail.

Reduction
Reduction, in contrast to abstraction, is not about 
reducing the amount of information but rather about 
finding the optimal way to transport it, hence rewriting 
the description without altering the content.

In the CAD domain, reduction can happen on 
different levels. Low-level reduction is about optimal 
descriptions of single geometric entities that save 
resources such as memory and disk space.

Fortunately, reduction on this level happens deep 
within the CAD system. It is higher-level reduction 
that is more interesting to the designer. Here we 
are mainly talking about two different procedures: 
elimination of redundancies and optimisation of 
descriptions and processes.

Normalisation
Redundancies (information that is present more than 
once) increase the weight of the model without adding 
detail and, more importantly, lead to update anomalies: 
the model can become inconsistent if only parts are 
updated. In database theory, the process of eliminating 
such anomalies is called normalisation. But it comes 
at a price: while changing information (writing) 
is made safer and quicker, extracting information 
(reading) becomes more complicated and generally 
slower, because it must be compiled from several spots 
throughout the dataset. Therefore, databases that are 
significantly more read than written are often kept 
partly redundant on purpose.

Carried over to CAD, this means that when creating 
1,000 parametric components on one reference surface it 
could be sufficient to save one single point per entity and 
define a set of geometric operations to re-create its actual 
shape. However, this might render the model unusable 
as those operations have to be repeated on every 



76

information request. So the shortest possible description 
is not necessarily the best one. It might be worthwhile 
to keep some redundancies while carefully respecting 
update consistency.

Parametric modellers like McNeel’s Grasshopper 
generally produce largely normalised models. When 
setting up a model, the user builds a hierarchical graph 
rooted in the input geometry. Grasshopper achieves a 
great deal, representing the graph visually and letting 
the user interact with it in a fairly intuitive way. Still, 
designers should be aware that the resulting geometry 
at every stage is volatile and immediately dependent 
on the input. While this eliminates the risk of update 
anomalies it also suppresses the possibility of deliberate 
redundancies or manual intervention.

Refactoring
The second flavour of high-level reduction could be 
described as cleaning up a model. Again, it can be rooted 
in computer science, where it is known as refactoring; 
that is, changing the source code of a program 
without changing its functionality in order to ensure 
maintainability and extensibility. This can be mapped 
directly to CAD: by throwing away superficial parts and 
simplifying parametric dependencies, a model can be kept 
sleek and efficient. This is especially important when it is 
used by more than one party.

However, it is important to note that reduction is 
irreversible: once we reduce a circle’s description from 
three points to centre and radius, there is no way to get 
our initial points back – the information is retained, 
but not its history. This means that designers have to 
make sure the parts they eliminate are truly superficial; 
otherwise reduction becomes further abstraction that 
affects the functionality of the model.

Algorithms
Theoretical computer science is definitely unlisted 
on the average architecture student’s agenda. But 
when parts of the design are delegated to computer 
programs (as in computational optimisation) or new 
computational tools are developed within a design 
process (as in parametric modelling), some knowledge 
about algorithms becomes key to understanding their 
influence both on the process and its result.

Determinism
First and foremost, contrary to a design problem, an 
algorithm has to be well defined. Since computers 
cannot guess based on experience and intuition, every 
step in a computer program has to be completely and 
unambiguously determined by the previous steps. Any 
decision making on how to proceed has to be already 
embedded in the program, and randomness is only 
simulated by numerical methods. Even computer 
programs that seem to exhibit experience (like expert 

systems) or random behaviour (like evolutionary 
systems) are running on deterministic hardware that can 
only switch currents on or off in a silicon chip (non-
deterministic algorithms do exist, but they are mainly 
of interest for computational theory due to the lack of 
appropriate non-deterministic hardware).

Thus, defining an algorithm to solve a class of 
problems means to already know a general solution for 
those problems and describe a step-by-step process to 
derive an output from the given input. The first step 
usually is to assert that the input matches the problem 
specifications and can be processed (so the range of 
allowed inputs – the so-called ‘parameter space’ – 
has to be already well defined). From there on, the 
algorithm deterministically proceeds step by step, until 
it presents always the same final result for the same 
given input. Incidentally, evolutionary methods are no 
exception to this rule; they merely lift it to a different 
level of abstraction. The evolutionary method as such 
has to be well defined and deterministic, only the 
results are probabilistic.

Termination
Unfortunately it is not at all given that even a 
deterministic algorithm will eventually deliver a 
result. As soon as an algorithm contains some sort of 
loop it becomes hard to prove that it never gets lost 
in perpetual orbit for any given input. Consequently, 
parametric modellers like Grasshopper do not allow 
loops in their models. The data-flow diagram set up 
by the user always forms a directed loop-free graph 
assuring that data passes through without ever reaching 
the same point twice. On the other hand, iteratively 
executing the same step many times or even recursively 
calling an algorithm from within itself are very powerful 
and indispensable methods for efficient programs. 
And as a matter of fact, loops are used in parametric 
models, albeit only within the encapsulated components 
provided by the modeller and carefully hidden from the 
user to rule out infinite loops. 

Computational Complexity
Sometimes even finite loops are too much. There are 
problems that can be solved by perfectly well-defined 
and provably terminating algorithms – only it takes far 
too long to wait for the result. A striking example is 
the so-called ‘Travelling Salesman Problem’ of finding 
the shortest route through all cities on a given list. An 
algorithm just has to generate all possible permutations 
of the listed cities, calculate the respective route lengths 
and find the shortest one. Since the number of cities 
is finite, so is the number of routes that can therefore 
be tested in finite time by a deterministic algorithm. 
The only problem is that for n cities the number of 
permutations accounts to ½×(n-1)!, a term that grows by 
the factorial (that is, the product of all positive integers 



77

Figure 9. Shigeru Ban, Heasly Nine Bridges Golf Club, Yeoju, 
South Korea, 2010
The timber roof structure is defined by a regular tri-fold grid that 
is vertically projected to a curved surface. Girders are created on 
every projected grid line. Their orientation follows the surface, 
rendering them curved and twisted. The girders intersect at almost 
7,500 crossing points.

Figure 7. Shigeru Ban, Heasly Nine Bridges Golf Club, Yeoju, South Korea, 2010
To allow for continuous girders in all three directions, they are split into five layers 
with two lap joints at every crossing. The complete roof contains some 3,500 
curved timber components with almost 15,000 lap joints. Even though many 
parts are similar, 467 individual components with over 2,000 different joints had 
to be described in detail. This was only possible by formally describing the whole 
structure in a parametric system that automatically generated the detailed models 
from a reference surface and some numerical parameters.

Figure 8. Reducing a circle
A circle can be unambiguously described by three points. However, 
if the notation is changed into one centre point plus normal vector 
and radius, the description size can be reduced from nine values 
(three points at three coordinates each) to seven values (two points 
and a number), saving 22 per cent.



78

Figure 10. Curved beams in the Kilden facade
All timber beams are derived by projecting straight 
lines onto offsets from the same reference surface. 
The shortest possible description of each beam 
would therefore only contain one line, a width, 
a surface offset distance and a reference to the 
original surface. But the laborious offset and 
projection operations would have to be repeated 
whenever information about the beam geometry is 
needed. So it is reasonable to save the projected 
beam edges in the model, as long as they are 
updated when the reference surface changes.

Figure 12. Schematic view of a genetic algorithm (GA)
Evolutionary methods seem to find surprisingly good results in vast 
solution spaces by chance, but they are based on completely deterministic 
algorithms. Notably the encoding of an individual’s properties into a 
genome, the recombination of genomes during reproduction, and the 
selection based on a quantifiable fitness measure have to be formally well 
defined and unambiguous. Virtual dice are tossed at some steps of the 
algorithm to draw decisions, but this is also part of the predefined recipe.

Figure 13. The Travelling Salesman Problem
For three cities A, B and C, the six permutations would be 
[ABC], [ACB], [BCA], [BAC], [CBA] and [CAB]. If we assume 
that neither starting city nor travelling direction matter, those 
three routes are effectively the same. So for three cities, there 
is only one possible route. But that changes quickly for n>3.

Figure 11. Parametric Grasshopper model
Parametric models describe the relations between different parts of a model as a graph 
where each node defines a (geometric) entity. The properties of one entity can be passed 
on to dependent entities, influencing their behaviour. This visually explains the flow of 
data and the hierarchy of entities in the model. Shown here is a parametric model that 
takes two curves and a number and generates three different NURBS surfaces.



79

when and why these errors occur can help to improve 
the construction sequence instead of just readjusting the 
tolerance settings when Boolean intersection fails again.

Quality
As we have seen, complex shapes can only be handled 
if digital or even parametric models are an integral part 
of the architectural design and communication process. 
Digital models, which aim at describing and simulating 
aspects of real objects, need to be set up carefully, with 
the right focus and the appropriate level of abstraction 
to deliver meaningful results. Especially when using 
parametric models, the hierarchic dependencies within 
complex structures have to be thoroughly untangled 
and precisely described in formal algorithmic and 
mathematic notations; only then can the output be rebuilt 
automatically upon changing the input parameters. But 
when a specific design is just one out of a myriad of 
possible instances a parametric machine can produce, 
what is the appropriate level to discuss the quality of 
design? Clearly, meaningful evaluation cannot stop at 
the skin-deep layer of the output’s visible appearance. 
Nevertheless, today’s architectural discourse rarely dives 
below this level, even though designers are gradually 
becoming programmers who design their own, highly 
sophisticated tools. 

We think it is about time to discuss the quality of 
the processes instead of merely reviewing the end results 
that can be generated in endless variations. If we do not 
want to get lost in parameter space, we need to assess 
and understand the quality of the algorithmic machines 
we design, not the designs they produce. Which are the 
defining parameters of a model? Where and how does 
abstraction strike and why are certain things included 
and others left out? How are algorithms conceived and 
rules defined? What are the quantifiable – and therefore 
optimisable – measures for the quality of a design and 
how are they weighed against each other? What defines 
the quality of an algorithm and how does it reflect in 
its output? And finally, how can we communicate and 
discuss complex architectural structures in a meaningful 
way – not between digital machines but between the 
human minds assembled in a project team? Because in 
the end ‘designing’ means drawing decisions and taking 
the responsibility, not delegating them to a machine. 
Only this prevents algorithmic design, which is largely 
based on formal descriptions, from itself becoming 
formalistic. 1

Note
1. See, for example, Helmut Pottmann, Andreas Asperl, Michael 
Hofer and Axel Kilian, Architectural Geometry, Bentley Institute 
Press (Exton), 2007. Also Jane Burry and Mark Burry, The New 
Mathematics of Architecture, Thames & Hudson (London), 2010.

Text © 2011 John Wiley & Sons Ltd. Images: pp 70-3, 74(t), 77(t&br), 78 © 
designtoproduction Zurich/Stuttgart; p 74(b) © Hans Olaf Omnes, AF Gruppen; p 
77(bl) © Blumer Lehman AG

less than or equal to a number) of the list length. For 
n=16 there already are ½×1×2×3×4×5×6×7×8×9×10×11×
12×13×14×15 = 653,837,184,000 alternatives to check, 
which at a rate of one million routes per second takes 
about 7.5 days; and one single extra city would raise the 
waiting time to four months.

The amount of resources consumed by an 
algorithm in relation to the number of inputs is called 
‘computational complexity’. As the travelling salesman 
problem shows, the computational complexity of most 
problems does not scale linearly with the number of 
inputs. In particular, computational simulations like 
finite element analysis (FEA) and computational fluid 
dynamics (CFD) are not easily scalable, which makes 
it practically impossible to simulate large models in 
reasonable time, for example to use the results as fitness 
measures for evolutionary optimisation. Buying faster 
processors will only help momentarily; building leaner 
models and applying smarter methods is a much more 
sustainable approach.

Precision
It is a still common misconception that digital models 
are infinitely precise. Truth is that every computational 
operation on real numbers is subject to slight errors due 
to the fact that those numbers are stored as a combination 
of a whole number and an exponent, with finite precision 
(this is called ‘floating point’ to illustrate that the position 
of the radix point depends on the variable exponent). 
While these imprecisions can be neglected in most 
cases, they can add up and become relevant especially 
in complex geometric operations. Because of the finite 
number of digits available for both integral and fractional 
part, floating point errors are also dependent on the 
operands’ magnitudes, which is why the exact same 
operation might succeed at the model origin [0,0,0] but 
fail at [1015,1015,1015]. 

Furthermore, many fundamental geometric 
operations – like finding the intersection of two 
NURBS surfaces – utilise numerical approximation, 
which ultimately destroys the notion of infinitely 
precise CAD models. This is also the reason for CAD 
modellers to provide a tolerance setting. Increasing 
the tolerance can help working with imprecise input 
geometry, but will also lower the resulting quality. 
While decreasing it raises precision, it also elevates the 
barrier for geometric operations to succeed and boosts 
computation time.

While this impreciseness is inherent to geometric 
operations, it is notably not so to their formal description; 
formally defined models are precise until they are 
rendered into geometry. So the transition from formal 
relations to geometric operations is an important one that 
should be commenced carefully.

Of course, error-bound geometric operations are 
impossible to avoid in CAD modelling, but knowing 


