
CS-E4800 Artificial Intelligence

Jussi Rintanen

Department of Computer Science
Aalto University

February 9, 2017

Logic-Based Breadth-First Search

Before SAT-based reachability, previous breakthrough
in 1989.

sets = formulas, relations = formulas

plugged in in a conventional breadth-first search
algorithm

model-checking and verification (Coudert et al.
1989, Burch et al., 1994)

formulas as Binary Decision Diagrams

Image Operations

When viewing actions as relations R , the successor
states of a set S are obtained with the image operation.

imgR(S) = {s ′|s ∈ S , sRs ′}

We will later define a logical image operation when
both S and R are represented as formulas.

Analogous pre-image operation defined similarly.

preimgR(S) = {s|s ′ ∈ S , sRs ′}

Reachable States by Breadth-First Search
INPUT: I = set of initial states

R = binary relation on states

1 i := 0
2 S0 := I

3 i := i + 1
4 Si := Si−1 ∪ imgR(Si−1)
5 if Si 6= Si−1 then go to step 3

S0, S1, S2, . . . consist of states reachable by
≤ 0,≤ 1,≤ 2, . . . actions, respectively
In the end, Si consists of all reachable states.

Formulas as Data Structure: Relations

Successor states of {000, 010, 111} w.r.t. relation
{(000, 011), (001, 010), (010, 001), (011, 000)}?

First Step: Select matching lines from state set and
relation by natural join:

0
000
010
111

./

0 1
000 011
001 010
010 001
011 000

=
0 1

000 011
010 001

Formulas as Data Structure: Relations

Second Step: Project the successor states from the
selected subset of the relation

Π1

 0 1
000 011
010 001

 =
1

011
001

Successor states of {000, 010, 111} w.r.t. relation
{(000, 011), (001, 010), (010, 001), (011, 000)}?
They are {001, 011}.

Relation Operations in Logic

When sets and relations are represented as formulas,
how to perform the corresponding relation operations?

relation operation logical operation
(natural) join conjunction
projection ∃-abstraction

Natural Join as Conjunction

0
000
010
111

./

0 1
000 011
001 010
010 001
011 000

=
0 1

000 011
010 001

((¬A@0 ∧ ¬B@0 ∧ ¬C@0) ∨ (¬A@0 ∧ B@0 ∧ ¬C@0) ∨ (A@0 ∧ B@0 ∧ C@0))
∧

(¬A@0 ∧ ¬A@1 ∧ (¬B@0↔ B@1) ∧ (¬C@0↔ C@1))
=

¬A@0 ∧ ¬A@1 ∧ ((¬B@0 ∧ ¬C@0 ∧ B@1 ∧ C@1) ∨ (B@0 ∧ ¬C@0 ∧ ¬B@1 ∧ C@1))

Formulas as Data Structure: Relations

What logical operation corresponds to projection?

Π1

 0 1
000 011
010 001

 =
1

011
001

From ¬A@0 ∧ ¬A@1 ∧ ((¬B@0 ∧ ¬C@0 ∧ B@1 ∧ C@1) ∨
(B@0 ∧ ¬C@0 ∧ ¬B@1 ∧ C@1)) produce
(¬A@1 ∧ B@1 ∧ C@1) ∨ (¬A@1 ∧ ¬B@1 ∧ C@1).

Existential and Universal Abstraction

Definition
Existential abstraction of φ with respect to x :

∃x .φ = φ[>/x] ∨ φ[⊥/x].

(Cf. Shannon expansion φ ≡ (x ∧ φ[>/x]) ∨ (¬x ∧ φ[⊥/x]))

Definition
Universal abstraction of φ with respect to x :

∀x .φ = φ[>/x] ∧ φ[⊥/x].

∃-Abstraction

Example

∃B .((A→ B) ∧ (B → C))
= ((A→ >) ∧ (> → C)) ∨ ((A→ ⊥) ∧ (⊥ → C))
≡ C ∨ ¬A
≡ A→ C

∃AB .(A ∨ B) = ∃B .(> ∨ B) ∨ (⊥ ∨ B)
= ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))
≡ (> ∨>) ∨ (> ∨⊥) ≡ >

Properties of Existential Abstraction

Theorem
Let φ be any formula over atomic propositions X and
v : X → {0, 1} any valuation of X .

1 If v(φ) = 1, then also v(∃x .φ) = 1.
2 If v(∃x .φ) = 1, then there is a valuation v ′ such

that v ′(φ) = 1, and v(y) = v ′(y) for all
y ∈ X\{x}.

∀ and ∃-Abstraction with Truth-Tables

∀c and ∃c eliminate the column for c by combining
lines with the same valuation for variables other than c .

Example
∃c .(a ∨ (b ∧ c)) ≡ a ∨ b ∀c .(a ∨ (b ∧ c)) ≡ a

a b c a ∨ (b ∧ c)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

a b ∃c .(a ∨ (b ∧ c))
0 0 0

0 1 1

1 0 1

1 1 1

a b ∀c .(a ∨ (b ∧ c))
0 0 0

0 1 0

1 0 1

1 1 1

Example

From ¬A@0∧¬A@1∧((¬B@0∧¬C@0∧B@1∧C@1)∨(B@0∧
¬C@0∧¬B@1∧C@1) produce
(¬A@1∧B@1∧C@1)∨(¬A@1∧¬B@1∧C@1).

Φ=¬A@0∧¬A@1∧((¬B@0∧¬C@0∧B@1∧C@1)∨(B@0∧¬C@0∧¬B@1∧C@1)

∃A@0B@0C@0.Φ
=∃B@0C@0.(Φ[⊥/A@0]∨Φ[>/A@0])
=∃B@0C@0.(¬A@1∧((¬B@0∧¬C@0∧B@1∧C@1)∨(B@0∧¬C@0∧¬B@1∧C@1))
=∃C@0.((¬A@1∧(¬C@0∧B@1∧C@1))∨(¬A@1∧((¬C@0∧¬B@1∧C@1))))
=(¬A@1∧B@1∧C@1)∨(¬A@1∧¬B@1∧C@1)

Computing the Successors of a State Set

Procedure
INPUT:

φ representing a set of states

Θ01 formula for a relation

1 Compute the formula ∃X0.(φ@0 ∧Θ01) where X0

is all state variables with subscript 0 added.
2 Replace all remaining subscripts 1 by 0.

Denote the resulting formula by imgΘ01
(φ).

Computing All Reachable States

1 i := 0
2 Φ0 := I@0 (The initial states as a formula)

3 i := i + 1
4 Φi := Φi−1 ∨ imgΘ01

(Φi−1)
5 if Φi 6|= Φi−1 then go to step 3

Φi represents the set of all reachable states

SAT-based Reachability vs. Symbolic
Breadth-First

Theorem

I@0 ∧Θ01 ∧ · · · ∧Θ(T−1)T ∧ G@T

is satisfiable iff the following is:(
∃X0 ∪ · · ·XT−1(I@0 ∧Θ01 ∧ · · · ∧Θ(T−1)T

)
) ∧ G@T

Stochastic Actions

What to do when actions are stochastic
(non-deterministic)?

Multiple possible successor states

Reaching goals cannot always be guaranteed
Options:

1 Try to maximize probability of reaching goals
2 Try to minimize expected cost of reaching goals
3 Try to maximize expected rewards (no goal states!)

This lecture: Markov decision processes (option 3)

Markov Decision Processes (MDP)

Definition (MDP 〈S ,A,P ,R〉)
S is a (finite) set of states

A is a (finite) set of actions

P : S × A× S → R gives transition probabilities

R : S × A× S → R is a reward function

Notice that

Plan/policy given as π : S → A

Usually no designated initial state

Reward functions are often R(s, a) : S × A→ R

Policies for MDPs (deterministic example)

All actions

Policy/plan

Policies for MDPs (deterministic example)

All actions

Policy/plan

Value of an Action Sequence

1 finite sum
n∑

i=0

R(si , ai , si+1)

2 geometrically discounted sum (with 0 < γ < 1)

n∑
i=0

γ i · R(si , ai , si+1)

3 average

lim
N→∞

∑N
i=0 R(si , ai , si+1)

N

Value of an Action Sequence

Finite sums are used when
time horizon is bounded, or
approximate infinite with finite: receding-horizon
control

Discounted sums are used often
Finite sum for infinite sequences when γ < 0
Easy to handle in algorithms (the Bellman equation)

Averages useful, but difficult to handle
Bellman equation does not apply
Easier in special cases only (unichain)

Choice of the Discount Factor γ

γ close to 0: Emphasis on short-term rewards

γ close to 1: Emphasis on long-term rewards

Example
value with

rewards γ = 0.1 γ = 0.8 γ = 0.9 γ = 0.99
5 0 0 0 20 5.002 13.192 18.122 24.212
20 0 0 0 5 20.00005 22.048 23.281 24.803

Bellman equation

The value of state s under the best possible
plan/policy given by the Bellman equation

v(s) = max
a∈A

∑
s ′∈S

P(s, a, s ′)[R(s, a, s ′) + γv(s ′)]

Algorithms for Finding Optimal Policies

Value Iteration
Iterate by finding value functions closer to optimal

Policy implicit in value function

Terminate when change smaller than given bound

Policy Iteration
Iterate by improving policy bit by bit

Fewer rounds than Value Iteration

Termination when policy not improved

Value Iteration
1 Let n := 0 and v0 : S → R be any value function.
2 For every s ∈ S

vn+1(s) = max
a∈A

(∑
s ′∈S

P(s, a, s ′) (R(s, a, s ′) + γvn(s ′))

)
.

Go to 3 if |vn+1(s)− vn(s)| < ε(1−γ)
2γ for all s ∈ S .

Otherwise set n := n + 1 and repeat this step.

3 Policy π : S → A given by

π(s) = arg max
a∈A

∑
s ′∈S

P(s, a, s ′) (R(s, a, s ′) + γvn(s ′)) .

Value Iteration

Theorem
Let vπ be the value function of the policy produced by
the value iteration algorithm, and let v ∗ be the value
function of an optimal policy. Then |v ∗(s)− vπ(s)| ≤ ε
for all s ∈ S.

Value Iteration
Example

Let γ = 0.6.

i vi (A) vi (B) vi (C) vi (D) vi (E)
0 0.000 0.000 0.000 0.000 0.000
1 1.000 0.000 0.000 5.000 0.000
2 1.000 2.760 0.600 5.000 0.600
3 1.656 2.760 0.600 5.360 0.600
4 1.656 2.994 0.994 5.360 0.994
5 1.796 2.994 0.994 5.596 0.994
6 1.796 3.130 1.078 5.596 1.078
7 1.878 3.130 1.078 5.647 1.078
8 1.878 3.162 1.127 5.647 1.127
...
19 1.912 3.186 1.147 5.688 1.147
20 1.912 3.186 1.147 5.688 1.147

R=5

R=1

p=0.1

p=0.9

A

B D

E
C

Policy Iteration

Policy Iteration finds optimal policies.
Slightly more complicated to implement than
Value Iteration: on each iteration

the value of the current policy is evaluated, and
the current policy is improved if possible.

Fewer iterations than with Value Iteration.

Value Iteration in practice usually more efficient.

Policy Evaluation with Linear Equations

Given a policy π, its value vπ with discount constant γ
satisfies for every s ∈ S

vπ(s) =
∑
s ′∈S

P(s, π(s), s ′) (R(s, π(s), s ′) + γvπ(s ′))

This yields a system of |S | linear equations and |S |
unknowns. The solution of these equations gives the
value of the policy in each state.

Policy Evaluation with Linear Equations
Example

Consider the policy

π(A) = R , π(B) = R , π(C) = B , π(D) = R , π(E) = B

vπ(A) = R(A,R) + 0γvπ(A) + 0γvπ(B) + 1γvπ(C) + 0γvπ(D) + 0γvπ(E)
vπ(B) = R(B,R) + 0.1γvπ(A) + 0γvπ(B) + 0γvπ(C) + 0.9γvπ(D) + 0γvπ(E)
vπ(C) = R(C ,B) + 0γvπ(A) + 0γvπ(B) + 0γvπ(C) + 0γvπ(D) + 1γvπ(E)
vπ(D) = R(D,R) + 0γvπ(A) + 0γvπ(B) + 0γvπ(C) + 0γvπ(D) + 1γvπ(E)
vπ(E) = R(E ,B) + 0γvπ(A) + 0γvπ(B) + 1γvπ(C) + 0γvπ(D) + 0γvπ(E)

vπ(A) = 1 +γvπ(C)
vπ(B) = 0 + 0.1γvπ(A) +0.9γvπ(D)
vπ(C) = 0 +γvπ(E)
vπ(D) = 5 +γvπ(E)
vπ(E) = 0 +γvπ(C)

Policy Evaluation with Linear Equations

vπ(A) −γvπ(C) = 1
−0.1γvπ(A) +vπ(B) −0.9γvπ(D) = 0

vπ(C) −γvπ(E) = 0
vπ(D) −γvπ(E) = 5

−γvπ(C) +vπ(E) = 0

Solving with γ = 0.5 we get

vπ(A) = 1
vπ(B) = 2.3

vπ(C) = 0
vπ(D) = 5

vπ(E) = 0

This is the value function of the policy.

Policy Iteration

1 n := 0
2 Let π0 : S → A be any mapping from states to

actions.
3 Compute vπn(s) for all s ∈ S .
4 For all s ∈ S

πn+1(s) = arg max
a∈A

(∑
s′∈S

P(s, a, s ′)(R(s, a, s ′) + γvπn(s ′)

)

5 n := n + 1
6 If n = 1 or vπn 6= vπn−1 then go to 3.

Policy Iteration

Theorem
If the number of states is finite, then Policy Iteration
terminates after a finite number of steps and returns an
optimal policy.

Proof idea.
There is only a finite number of different policies, and
at each step a properly better policy is found or the
algorithm terminates.

The number of iterations needed for finding an
ε-optimal policy by policy iteration is never higher than
the number of iterations needed by value iteration.

Policy Iteration
Example

itr. π(A) π(B) π(C) π(D) π(E) vπ(A) vπ(B) vπ(C) vπ(D) vπ(E)
1 R R R R R 1.56 3.09 0.93 5.56 0.93
2 B R R R R 1.91 3.18 1.14 5.68 1.14

R=5

R=1

p=0.1

p=0.9

A

B D

E
C

MDPs with Very Large State Spaces

Both Value Iteration and Policy Iteration “visit”
the whole state space

These algorithms not feasible beyond 107 states
Heuristic search algorithms for solving MDPs:

Not all states need to be visited
heuristics help focusing search
LAO∗, LRTDP, ...

Symbolic data structures (Algebraic Decision
Diagrams (ADD), other generalizations of BDD)

Reinforcement Learning

What if system model is incomplete?

reward function R(s, a, s ′) is unknown

transition probabilities P(s, a, s ′) unknown

Find near-optimal policies by Reinforcement Learning:

Learning and execution are interleaved

With every new reward and state, update model

Reinforcement Learning

Applications:
robotics
control of distributed systems: power, telecom, ...
game playing

Lots of different algorithms and approaches
Issues:

Size of the state space
Slow learning when lots of states

This lecture: brief intro to Q-learning

Q-Learning

What is given:

action set A,

state set S ,

discount factor γ (as with MDPs)

learning rate λ (higher → faster learning)

What is learned: Q-values Q(s, a) : S × A→ R which

estimate the value of taking a in s
summarize both

the transition probabilities from s with a, and
the values of successors of s with a

Q-Learning

1 Let Q(s, a) = 0 for all s ∈ S and a ∈ A
2 s := current state in the beginning

3 Choose action a based on Q(s, a) (see next slide)
4 Execute a to obtain new state s ′ and reward r
5 Q(s, a) := (1−λ)Q(s, a)+λ(r+γ·maxa∈AQ(s ′, a))
6 Set s := s ′ and go to 3

Step 3 tries to balance between

exploration: Improving accuracy of Q(s, a)

exploitation: Taking action a with highest Q(s, a)

Exploration vs. Exploitation

Choice of action based on Q(s, a1), . . . ,Q(s, an):

Prefer actions a with high Q(s, a) (exploitation)

Try also other actions (exploration)
Best to base this on an estimate on confidence

How much confidence on current Q(s, a)?
How many times has a been tried before in s?

More exploration early

More exploitation later

Lots of different alternatives how to do this!

	Formulas as Relations
	 and Abstraction
	Successor States
	Reachable States

	Markov Decision Processes
	Policy iteration

	Reinforcement Learning

