TIØ 1: Financial Engineering in Energy Markets

Afzal Siddiqui
Department of Statistical Science
University College London
London WC1E 6BT, UK
afzal@stats.ucl.ac.uk

COURSE OUTLINE

* Introduction (Chs 1-2)
* Mathematical Background (Chs 3-4)

太 Investment and Operational Timing (Chs 5-6)
\star Entry, Exit, Lay-Up, and Scrapping (Ch 7)
\star Recent Theoretical Work I: Capacity Sizing

* Recent Theoretical Work II: Risk Aversion and Multiple Risk Factors
* Applications to the Energy Sector I: Capacity Sizing, Timing, and Operational Flexibility
* Applications to the Energy Sector II: Modularity and Technology Choice

LECTURE OUTLINE

* Review of the now-or-never NPV approach
* Options and irreversibility
* Simple examples with uncertainty

TRADITIONAL APPROACH TO INVESTMENT

* The neoclassical view of investment under uncertainty is that a project should be accepted if its expected NPV is positive
- How to estimate cash flows?
- Which discount rate to use?
- Can also express the decision rule in terms of the marginal benefit and cost of the incremental unit
* Jorgenson (1963) compares the marginal value of capital with its periodic rental cost
* Tobin (1969) assesses the ratio q of the imputed value of capital to its purchase price
* This approach ignores irreversibility, uncertainty, and discretion over timing, however

OPTION APPROACH

* The option approach accounts for:
- Irreversibility in terms of sunk costs
- Uncertainty in the cash flows
- Timing over the investment decision, which includes the possibility to wait for more information about the cash flows
* Consequently, the NPV decision rule must be modified since the value of the project must exceed the investment cost by an amount equal to the opportunity cost of killing the option
* In practice, firms do not invest until the output price, for example, exceeds the long-run average cost substantially
* Investment under uncertainty is, thus, analogous to the exercise of financial options

IRREVERSIBILITY AND DEFERRAL

Why are investment costs sunk?

- Industry-specific capital is not recoverable because the circumstances that lead a firm to exit the industry will also make its assets less attractive to other firms
- Equipment that is not industry specific will suffer from the lemons problem: buyers will lack information and pay only the average cost, while owners of an above-average machine will be hesitant to sell (Akerlof (1970))
- Government regulation, such as capital controls, may also lead to irreversibility
Deferral is valuable because the additional information gained by waiting often outweighs the cost, e.g., in terms of lost revenue
- Invest only if the output price of the asset increases (just like with a call option)
- With threat of entry by other firms, the value of waiting may be lower

NON-ECONOMIC APPLICATIONS

夫 Marriage and suicide

- Waiting for a better match has option value, especially if the costs (in terms of courtship or divorce) are high
- Societies that make divorce difficult would observe longer waiting before deciding
- However, such societies possibly internalise this and have better matchmaking facilities
- In terms of suicide, perhaps most aggrieved people would ignore the option value of staying alive and exercise the option too quickly
- Again, societal taboos raise the perceived cost of the act
\star Legal reform
- Politicians may act too soon based on current public opinion to change laws and ignore the option value of waiting before opinion is sufficiently well entrenched
- Constitutional framers often impose high costs for changing the law, which corrects for the myopia of ignoring the option value

TWO-PERIOD EXAMPLE

* Suppose that we can invest in a widget factory that will last forever, i.e., no irreversibility or suspension
- Factory may be built instantaneously at cost $I=1600$ and produce one unit per year at zero operating cost
- Current widget price is $P_{0}=200$ and will rise (fall) to $P_{1}=300$ $\left(P_{1}=100\right)$ with probability $q=\frac{1}{2}\left(1-q=\frac{1}{2}\right)$ next year
After next year, there will be no more price changes
- NPV of investing now (with a future expected price of \$200) given the risk-free interest rate $r=0.1$ is $N P V=-I+\sum_{t=0}^{\infty} \frac{P_{0}}{(1+r)^{t}}=$ $-1600+200+\frac{200}{0.1}=600 \Rightarrow$ invest now
* What if we wait a year and invest only if the price increases?
- $N P V=\frac{1}{2}\left[-\frac{1600}{1.1}+\sum_{t=1}^{\infty} \frac{300}{1.1^{t}}\right]=\frac{1}{2}[-1455+3000]=773$
- Now, it seems better to wait a year before investing

The option to delay and irreversibility introduce the opportunity cost to investing now

TWO-PERIOD EXAMPLE: Figure 2.1

$P_{1}=\$ 100 \longrightarrow P_{2}=100$
Figure 2.1. Price of Widgets

VALUE OF FLEXIBILITY

* Having the option to delay the investment is worth \773\$ 600=\$ 173$
Another way to frame it: how high should I be in the flexible case before it is no more valuable than the inflexible case?
- Solve the following equation for $\bar{I}: \frac{1}{2}\left[-\frac{\bar{I}}{1.1}+\sum_{t=1}^{\infty} \frac{300}{1.1^{t}}\right]=600 \Rightarrow$ $\bar{I}=1980>I$
- Building a factory only now at a cost of $\$ 1600$ has the same value as the opportunity to build one either now or next year at a cost of $\$ 1980$
* No gain from hedging exposure to widget price
- Sell futures contract for delivery of 11 units in one year at a price of $\$ 200$: if the price increases to $\$ 300$ (decreases to $\$ 100$), then lose $\$ 1100$ (gain $\$ 1100$) on derivatives
- Since the project is worth $\$ 3300(\$ 1100)$ in case of a price increase (decrease), the PV of cash flows is $\$ 2200$

ANALOGY TO FINANCIAL OPTIONS

t Use standard option pricing methods:

- Let $F_{0}\left(F_{1}\right)$ be the value of the investment opportunity today (next year)
- First, determine F_{1} : it is worth $\sum_{t=0}^{\infty} \frac{300}{1.1^{t}}-1600=1700$ next year if the price is $\$ 300$ and zero otherwise
- Determine F_{0} by constructing a risk-free portfolio, Φ_{0}, that consists of one unit of the option and is short n units of the underlying
- Portfolio today is worth $\Phi_{0}=F_{0}-n P_{0}=F_{0}-200 n$
- Next year, it is worth $\Phi_{1}=F_{1}-n P_{1}$, which is equal to $1700-300 n$ if $P_{1}=300$ and $-100 n$ otherwise
- In order for the portfolio to be risk free, we must have the same payoff regardless of the state of nature: $1700-300 n=-100 n \Rightarrow$ $n=8.5, \Phi_{1}=-850$
- No-arbitrage condition: return on portfolio must equal the risk-free rate earned on its initial value
$-\Phi_{1}-\Phi_{0}-r n P_{0}=\Phi_{1}-F_{0}+n P_{0}-r n P_{0}=680-F_{0}$
- Since $r \Phi_{0}=0.1\left(F_{0}-1700\right)$, we obtain $F_{0}=773$

SENSITIVITY ANALYSIS: Cost of Investment

* In case of arbitrary investment cost, I, we have $\Phi_{1}=$ $3300-I-300 n$ if $P_{1}=300$ and $\Phi_{1}=-100 n$ otherwise
- Equating the two implies $n=16.5-0.005 I$ and $\Phi_{1}=0.5 I-1650$

Since $\Phi_{0}=F_{0}-n P_{0}=F_{0}-3300+I$, the expected portfolio appreciation is $\Phi_{1}-\Phi_{0}-r n P_{0}=1320-F_{0}-0.4 I$

* Equating this to the instantaneous risk-free return, $r \Phi_{0}=0.1 F_{0}-330+0.1 I$, yields $F_{0}=1500-0.455 I$
* Invest today if $V_{0}>F_{0}+I \Rightarrow 2200>1500+0.545 I \Rightarrow$ $I<1283.33$ (Figure 2.2)

Never invest if $F_{0}<0 \Rightarrow I>3300$

SENSITIVITY ANALYSIS : Figure 2.2

Figure 2.2. Option to Invest in Widget Factory

SENSITIVITY ANALYSIS: Initial Price

Have an arbitrary P_{0} so that $P_{1}=1.5 P_{0}$ or $P_{1}=0.5 P_{0}$

- This implies that $F_{1}=\max \left(0,11 P_{1}-1600\right)$
- Consequently, $\Phi_{1}=11 \mathrm{P}_{1}-1600-n P_{1}=16.5 P_{0}-1600-1.5 n P_{0}$ if $P_{1}=1.5 P_{0}$ and $\Phi_{1}=-0.5 n P_{0}$ otherwise
- Equating the two yields $n=16.5-\frac{1600}{P_{0}}$ and $\Phi_{1}=-8.25 P_{0}+800$

In year $0, \Phi_{0}=F_{0}-n P_{0}=F_{0}-16.5 P_{0}+1600$
Expected net appreciation is $\Phi_{1}-\Phi_{0}-r n P_{0}=6.6 P_{0}-$ $F_{0}-640$
Equate this to the rate of return on the portfolio, $r \Phi_{0}=$ $0.1 F_{0}-1.65 P_{0}+160$, to yield $F_{0}=7.5 P_{0}-727$
\star Never invest if $F_{0}<0 \Rightarrow P_{0}<97$
\star Invest now if $F_{0}+I<V_{0} \Rightarrow 7.5 P_{0}-727+1600<11 P_{0} \Rightarrow$ $P_{0}>249$ (Figure 2.4)

SENSITIVITY ANALYSIS: Figure
 2.4

Figure 2.4. Value of Option to Invest as a Function of Initial Price

SENSITIVITY ANALYSIS: Price

Uncertainty

\star Either $P_{1}=1.75 P_{0}$ or $P_{1}=0.25 P_{0}$

- This implies $F_{1}=\max \left(0,11 P_{1}-1600\right)$ so that $\Phi_{1}=19.25 P_{0}-$ $1600-1.75 n P_{0}$ if $P_{1}=1.75 P_{0}$ and $\Phi_{1}=-0.25 n P_{0}$ otherwise
- Equating the two yields $n=12.83-\frac{1066.67}{P_{0}}$
- Thus, $\Phi_{1}=-3.2075 P_{0}+266.67$ and $\Phi_{0}=F_{0}-12.83 P_{0}+1066.67$
* Expected net appreciation is $\Phi_{1}-\Phi_{0}-r n P_{0}=8.3395 P_{0}-$ $F_{0}-693.33$
Risk-free return is $r \Phi_{0}=0.1 F_{0}-1.283 P_{0}+106.67$
\star Equating the two yields $F_{0}=8.747 P_{0}-727$, which is more sensitive to P_{0} than before
\star Never invest if $F_{0}<0 \Rightarrow P_{0}<83.15$
Invest now if $F_{0}+I<V_{0} \Rightarrow P_{0}>388$

BAD NEWS PRINCIPLE

\star Investment threshold price depends on the size of the downward price movement, d (Bernanke (1983))

- Ability to avoid consequences of bad news that leads us to wait Suppose that $P_{1}=(1+u) P_{0}$ with probability q and $P_{1}=(1-d) P_{0}$ otherwise
\star Invest now: $N P V_{0}=-I+P_{0}+q \sum_{t=1}^{\infty} \frac{(1+u) P_{0}}{1.1^{t}}+(1-$ q) $\sum_{t=1}^{\infty} \frac{(1-d) P_{0}}{1.1^{t}}=-I+10 P_{0}[1.1+q(u+d)-d]$
* Invest next year: $N P V_{1}=$ $\frac{1}{1.1}\left[q \max \left(0,-I+11(1+u) P_{0}\right]\right.$
- Indifference point: $N P V_{0}=N P V_{1} \Rightarrow P_{0}^{*}=\frac{I}{11} \frac{[0.1+(1-q)]}{[0.1+(1-q)(1-d)]}$
* Only magnitude of the downward move affects the investment threshold

THREE-PERIOD EXAMPLE

\& Now, assume that the price can also change in period 2 , i.e., P_{2} can be either $2.25 P_{0}, 0.75 P_{0}$, or $0.25 P_{0}$

* There are now five possible strategies
- Never invest
- Invest only in period 2 if $P_{2}=2.25 P_{0}$
- Invest in period 1 if $P_{1}=1.5 P_{0}$ but never invest if $P_{1}=0.5 P_{0}$
- Invest in period 1 if $P_{1}=1.5 P_{0}$ and wait otherwise
- Invest in period 0
* Solve this problem by starting in period 1 assuming no investment and working backwards
- If $P_{1}=0.5 P_{0}$, then invest next year only if price rises
- Repeat for $P_{1}=1.5 P_{0}$

THREE-PERIOD EXAMPLE: $\mathbf{t}=\mathbf{1}$

If $P_{1}=0.5 P_{0}$, then invest at $t=2$ if $P_{2}=0.75 P_{0}$ and do nothing if $P_{2}=0.25 P_{0}$

- For $P_{2}=0.75 P_{0}, F_{2}=\sum_{t=0}^{\infty} \frac{0.75 P_{0}}{1.1^{t}}-1600=8.25 P_{0}-1600$ and $\Phi_{2}=8.25 P_{0}-1600-0.75 n_{1} P_{0}$
- Otherwise, for $P_{2}=0.25 P_{0}, F_{2}=0$ and $\Phi_{2}=-0.25 n_{1} P_{0}$
- Thus, $n_{1}=16.5-\frac{3200}{P_{0}}$ and $\Phi_{2}=800-4.125 P_{0}$
- Portfolio return: $\Phi_{2}-\Phi_{1}-r n_{1} P_{1}=3.3 P_{0}-F_{1}-640$
- Risk-free return: $r \Phi_{1}=0.1 F_{1}-0.825 P_{0}+160$
- No-arbitrage condition: $F_{1}=3.75 P_{0}-727.3$
- Do not invest if $F_{1}<0 \Rightarrow P_{0}<193.94$

THREE-PERIOD EXAMPLE: $\mathbf{t}=\mathbf{1}$

If $P_{1}=1.5 P_{0}$, then invest at $t=2$ if $P_{2}=2.25 P_{0}$ and do nothing if $P_{2}=0.75 P_{0}$

- For $P_{2}=2.25 P_{0}, F_{2}=\sum_{t=0}^{\infty} \frac{2.25 P_{0}}{1.1^{t}}-1600=24.75 P_{0}-1600$ and $\Phi_{2}=24.75 P_{0}-1600-2.25 n_{1} P_{0}$
- Otherwise, for $P_{2}=0.75 P_{0}, F_{2}=0$ and $\Phi_{2}=-0.75 n_{1} P_{0}$
- Thus, $n_{1}=16.5-\frac{1067}{P_{0}}$ and $\Phi_{2}=800-12.375 P_{0}$
- Portfolio return: $\Phi_{2}-\Phi_{1}-r n_{1} P_{1}=9.9 P_{0}-F_{1}-640$
- Risk-free return: $r \Phi_{1}=0.1 F_{1}-2.475 P_{0}+160$
- No-arbitrage condition: $F_{1}=11.25 P_{0}-727.3$
- Do not invest if $F_{1}<0 \Rightarrow P_{0} \leq 64.65$
- Invest immediately if $F_{1}+I<V_{1} \Rightarrow P_{0}>166.23$
- Otherwise, if $64.65<P_{0} \leq 166.23$, then wait for period 2

THREE-PERIOD EXAMPLE: $\mathbf{t = 0}$

The five possible strategies are:

- $P_{0} \leq 64.65:$ never invest, i.e., $F_{0}=0$
- $64.65<P_{0} \leq 166.23$: invest only in period 2 if $P_{2}=2.25 P_{0}$
- $166.23<P_{0} \leq 193.94$: invest in period 1 if $P_{1}=1.5 P_{0}$ but never invest otherwise
- $193.94<P_{0} \leq P_{I}$: invest in period 1 if $P_{1}=1.5 P_{0}$ and wait otherwise
- $P_{0}>P_{I}$: invest immediately in period 0
$64.65<P_{0} \leq 166.23$
- Invest only in $t=2$ if the price increases both times
- $P_{1}=1.5 P_{0}: F_{1}=11.25 P_{0}-727.3$ and $\Phi_{1}=11.25 P_{0}-727.3-$ $1.5 n_{0} P_{0}$
- $P_{1}=0.5 P_{0}: F_{1}=0$ and $\Phi_{1}=-0.5 n_{0} P_{0}$
- Thus, $n_{0}=11.25-\frac{727.3}{P_{0}}$ and $\Phi_{1}=363.65-5.625 P_{0}$
- Portfolio return: $\Phi_{1}-\Phi_{0}-r n_{0} P_{0}=4.5 P_{0}-F_{0}-290.92$
- Risk-free return: $r \Phi_{0}=0.1 F_{0}-1.125 P_{0}+72.73$
- No-arbitrage condition: $F_{0}=5.11 P_{0}-330.6$

THREE-PERIOD EXAMPLE: $\mathbf{t = 0}$

$166.23<P_{0} \leq 193.94$

- Invest in $t=1$ if the price increases and never invest otherwise
- $P_{1}=1.5 P_{0}: F_{1}=V_{1}-I=16.5 P_{0}-1600$ and $\Phi_{1}=16.5 P_{0}-$ $1600-1.5 n_{0} P_{0}$
- $P_{1}=0.5 P_{0}: F_{1}=0$ and $\Phi_{1}=-0.5 n_{0} P_{0}$
- Thus, $n_{0}=16.5-\frac{1600}{P_{0}}$ and $\Phi_{1}=800-8.25 P_{0}$
- Portfolio return: $\Phi_{1}-\Phi_{0}-r n_{0} P_{0}=6.6 P_{0}-F_{0}-640$
- Risk-free return: $r \Phi_{0}=0.1 F_{0}-1.65 P_{0}+160$
- No-arbitrage condition: $F_{0}=7.5 P_{0}-727.3$
$193.94<P_{0} \leq P_{I}$
- Invest in $t=1$ if the price increases and wait otherwise
- $P_{1}=1.5 P_{0}: F_{1}=16.5 P_{0}-1600$ and $\Phi_{1}=16.5 P_{0}-1600-1.5 n_{0} P_{0}$
- $P_{1}=0.5 P_{0}: F_{1}=3.75 P_{0}-727.3$ and $\Phi_{1}=3.75 P_{0}-727.3-0.5 n_{0} P_{0}$
- Thus, $n_{0}=12.75-\frac{872.7}{P_{0}}$ and $\Phi_{1}=-290.95-2.625 P_{0}$
- Portfolio return: $\Phi_{1}-\Phi_{0}-r n_{0} P_{0}=8.85 P_{0}-F_{0}-1076.38$
- Risk-free return: $r \Phi_{0}=0.1 F_{0}-1.275 P_{0}+87.27$
- No-arbitrage condition: $F_{0}=9.2 P_{0}-1057.9$

THREE-PERIOD EXAMPLE: $\mathbf{t}=\mathbf{0}$

$P_{I}<P_{0}$

- Invest immediately at $t=0$
- $V_{0}-I=11 P_{0}-1600$
- Find P_{I} by equating F_{0} and $V_{0}-I$
- Thus, $11 P_{I}=1600+9.2 P_{I}-1057.9$, which implies $P_{I}=301.2$
* Value of option to invest is still a piecewise linear function of the price, but now has five parts (Figure 2.6)
* Extension of the problem to more periods will result in more kinks in the function and later on explore continuous fluctuation of the payoff

THREE-PERIOD EXAMPLE: Figure 2.6

Figure 2.6. Value of Option to Invest as a Function of Initial Price

COST UNCERTAINTY

\star Suppose $P_{0}=200$ is fixed, but that I can vary

- $I_{0}=1600$ and either $I_{1}=2400$ or $I_{1}=800$ each with probability $\frac{1}{2}$
\star If invest today, then $N P V_{0}=2200-1600=600$
* Otherwise, if we wait one year, then $N P V_{0}^{\prime}=$ $\frac{1}{2}\left[\sum_{t=1}^{\infty} \frac{200}{1.1^{t}}-\frac{800}{1.1}\right]=\frac{1}{2}\left[2000-\frac{800}{1.1}\right]=636$
* Therefore, it is better to wait when there is cost uncertainty as well
* In case of technical uncertainty, it may be better to invest in the first phase in order to obtain more information about the cost

INTEREST RATE UNCERTAINTY

Have $r_{0}=0.10$ and either $r_{1}=0.15$ or $r_{1}=0.05$ each with probability $\frac{1}{2}$

- Since the perpetuity function is convex, i.e., $\frac{1}{r}$, Jensen's Inequality implies that $\mathcal{E}\left[\frac{1}{r}\right]=13.33>\frac{1}{\mathcal{E}[r]}=10$
* If $P_{0}=200$ and $I=2000$ are fixed, then the PV of cash flows next year will be $V_{1}=\sum_{t=0}^{\infty} \frac{200}{1.1^{t}}=2200$ if $r=0.1$
\star But with uncertain r, either $V_{1}=1533$ or $V_{1}=4200$ with equal probability; thus, $\mathcal{E}\left[\bar{V}_{1}\right]=2867>V_{1}$
- Without uncertainty: $N P V_{0}=2200-2000=200$ if invest today and $N P V_{0}=181.82$ if we invest next year
- With uncertainty: $\mathcal{E}\left[N P V_{0}\right]=-2000+200+\frac{\mathcal{E}\left[\tilde{V}_{1}\right]}{1.1}=806$ if invest today and $\mathcal{E}\left[N P V_{0}\right]=\frac{1}{2}\left[-\frac{2000}{1.1}+\frac{1}{1.1} \sum_{t=0}^{\infty} \frac{200}{1.05^{t}}\right]=1000$
Mean-preserving volatility increases option value along with the incentive to wait

SCALE VERSUS FLEXIBILITY

Economies of scale are often counterbalanced by flexibility

- Power company faces demand growth of 100 MW per annum
- Plan A: 200 MW coal-fired power plant, which will cost $\$ 180$ million to build and $\$ 19$ million per annum per 100 MW to operate forever
- Plan B: 100 MW oil-fired power plant, which will cost $\$ 100$ million to build and $\$ 20$ million per annum per 100 MW to operate
- If no uncertainty and $r=0.1$, then select coal

Oil price is relatively more uncertain, so suppose that it can either rise to $\$ 30$ million or fall to $\$ 10$ million after a year and 100 MW of capacity is built in the first two years

- $P V_{A}=180+\sum_{t=0}^{\infty} \frac{19}{1.1^{t}}+\sum_{t=1}^{\infty} \frac{19}{1.1^{t}}=579$ (coal today)
- $P V_{B}=100+\frac{100}{1.1}+\sum_{t=0}^{\infty} \frac{20}{1.1^{t}}+\sum_{t=1}^{\infty} \frac{20}{1.1^{t}}=611$ (oil today)
- $P V_{B}^{\prime}=100+\sum_{t=0}^{\infty} \frac{20}{1.1^{t}}+\frac{1}{2}\left[\frac{100}{1.1}+\sum_{t=1}^{\infty} \frac{10}{1.1^{t}}\right]$ $\frac{1}{2}\left[\frac{180}{1.1}-\frac{90}{1.1^{2}}+\sum_{t=1}^{\infty} \frac{19}{1.1^{t}}\right]=555$ (oil today and cheaper of

QUESTIONS

