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COURSE OUTLINE

F Introduction (Chs 1—2)
F Mathematical Background (Chs 3—4)
F Investment and Operational Timing (Chs 5—6)
F Entry, Exit, Lay-Up, and Scrapping (Ch 7)
F Recent Theoretical Work I: Capacity Sizing
F Recent Theoretical Work II: Risk Aversion and Multiple
Risk Factors

F Applications to the Energy Sector I: Capacity Sizing,
Timing, and Operational Flexibility

F Applications to the Energy Sector II: Modularity and
Technology Choice
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LECTURE OUTLINE

F Stochastic processes

F Wiener process and GBM

F Itô’s lemma

F Dynamic programming

F Contingent claims
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STOCHASTIC PROCESSES: 
Discrete Time and Discrete State
F A variable that evolves over time in at least a partially
random manner is a stochastic process

F More formally, a stochastic process is a law for the evo-
lution of variable xt over time t that allows us to calcu-
late for various t1 < t2 < t3 < . . . the joint probability
P {a1 < x1 ≤ b1, a2 < x2 ≤ b2, a3 < x3 ≤ b3, . . .}
I Stationary processes have statistical properties that are constant
over long periods of time, e.g., temperature

I Non-stationary processes may be things like stock prices
F Discrete-time processes change values only at discrete
points in time, e.g., random walk
I Starting with x0, xt takes independent jumps of size 1 (either up
or down) at discrete points t = 1, 2, 3, . . . each with probability 1

2

I Thus, xt has a binomial distribution: P[xt = t − 2n] =¡
t
n

¢ ¡
1
2

¢n ¡ 1
2

¢t−n
=
¡
t
n

¢
2−t is the probability that there are n down-

ward jumps and t− n upward jumps by time t
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STOCHASTIC PROCESSES: 
Discrete Time and Continuous State
F Instead of being a Bernoulli RV, the size of each jump
may be a continuous RV, e.g., normal with mean zero
and SD σ

F Another example is a first-order AR process, i.e., AR(1):
xt = δ+ρxt−1+²t, where −1 < ρ < 1 and ²t is a standard
normal RV
I Stationary process with long-run expected value δ

1−ρ
I A mean-reverting process

F Both the random walk and AR(1) are Markov processes,
i.e., the probability distribution for xt+1 depends only on
xt and is independent of anything that happened before
time t
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STOCHASTIC PROCESSES: 
Continuous Time
F AWiener process (or Brownian motion) has the following
properties:
I Markov process
I Independent increments
I Changes over any finite time interval are normally distributed with
variance that increases linearly in time

F Nice property that past patterns have no forecasting
value

F For prices, it makes more sense to assume that changes
in their logarithms are normally distributed, i.e., prices
are lognormally distributed

F More formally for a Wiener process {z(t), t ≥ 0}:
I ∆z = ²t

√
∆t, where ²t ∼ N (0, 1)

I ²t are serially uncorrelated, i.e., E [²t²s] = 0 for t 6= s
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STOCHASTIC PROCESSES: 
Continuous Time
F Implications of the two conditions are examined by
breaking up the time interval T into n units of length
∆t each
I Change in z over T is z(s+ T )− z(s) =Pn

i=1 ²i
√
∆t, where the ²i

are independent
I Via the CLT, z(s+ T )− z(s) is N (0, n∆t = T )
I Variance of the changes increases linearly in time

F Letting ∆t become infinitesimally small implies dz =
²t
√
dt, where ²t ∼ N (0, 1)

F This implies that E [dz] = 0 and V(dz) = E [(dz)2] = dt
F Coefficient of correlation between two Wiener processes,
z1(t) and z2(t): E [dz1dz2] = ρ12dt
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STOCHASTIC PROCESSES: 
Brownian Motion with Drift
F Generalise the Wiener process: dx = αdt + σdz, where
dz is the increment of the Wiener process, α is the drift
parameter, and σ is the variance parameter
I Over time interval ∆t, ∆x is normal with mean E[∆x] = α∆t and
variance V(∆x) = σ2∆t

I Given x0, it is possible to generate sample paths
I For example, if α = 0.2 and σ = 1.0, then the discretisation with
∆t = 1

12
is xt = xt−1 + 0.01667 + 0.2887²t (Figure 3.1)

F Optimal forecast is x̂t+T = xt + 0.01667T and 66% CI is
xt + 0.01667T ± 0.2887

√
T (Figure 3.2)

F Mean of xt − x0 is αt and its SD is σ
√
t, so the trend

dominates in the long run
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STOCHASTIC PROCESSES: 
Figures 3.1 and 3.2
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STOCHASTIC PROCESSES: Brownian 
Motion and Random Walks
F Suppose that a discrete-time random walk for which the
position is described by variable x makes jumps of ±∆h
every ∆t time units given the initial position x0
I The probability of an upward (downward) jump is p (q = 1− p)
I Thus, x follows a Markov process with independent increments,
i.e., probability distribution of its future position depends only on
its current position (Figure 3.3)

F Mean: E [∆x] = (p− q)∆h; second moment: E [(∆x)2] =
p(∆h)2+q(∆h)2 = (∆h)2; variance: V(∆x) = (∆h)2[1−
(p− q)2] = [1− (2p− 1)2](∆h)2 = 4pq(∆h)2

F Thus, if t has n = t
∆t
steps, then xt−x0 is a binomial RV

with mean nE [∆x] = t(p−q)∆h
∆t

and variance nV(∆x) =
4pqt(∆h)2

∆t
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STOCHASTIC PROCESSES: 
Figure 3.3
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STOCHASTIC PROCESSES: Brownian 
Motion and Random Walks
F Choose ∆h, ∆t, p, and q so that the random walk con-
verges to a Brownian motion as ∆t→ 0
I ∆h = σ

√
∆t

I p = 1
2

h
1 + α

σ

√
∆t
i
, q = 1

2

h
1− α

σ

√
∆t
i

I Thus, p− q = α
σ

√
∆t = α

σ2
∆h

F Substitute these into the formulas for the mean and vari-
ance xt − x0:
I Mean: E [xt−x0] = tα(∆h)2

σ2∆t
= tασ2∆t

σ2∆t
= αt; variance: V(xt−x0) =

4pqt(∆h)2

∆t
=

4tσ2∆t

∙
1−α2

σ2
∆t

¸
4∆t

= tσ2
h
1− α2

σ2
∆t
i
, which goes to tσ2

as ∆t→ 0

F Hence, these are the mean and variance of a Brown-
ian motion; furthermore, the binomial distribution ap-
proaches the normal one for large n
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GENERALISED BROWNIAN 
MOTION
F An Itô process is dx = a(x, t)dt + b(x, t)dz, where dz is
the increment of a Wiener process, and both a(x, t) and
b(x, t) are known but may be functions of both x and t
I Mean: E [dx] = a(x, t)dt; second moment: E [(dx)2] =
E[a2(x, t)(dt)2+b2(x, t)(dz)2+2a(x, t)b(x, t)dtdz] = b2(x, t)dt; vari-
ance: V(dx) = E[(dx)2]− (E[dx])2 = b2(x, t)dt

F A geometric Brownian motion (GBM) has a(x, t) = αx
and b(x, t) = σx, which implies dx = αxdt+ σxdz
I Percentage changes in x are normally distributed, or absolute
changes in x are lognormally distributed

I If {y(t), t ≥ 0} is a BM with parameters
¡
α− 1

2
σ2
¢
t and σ2t, then

{x(t) ≡ x0ey(t), t ≥ 0} is a GBM
I my(s) = E [esy(t)] = esαt−

sσ2t
2

+ s2σ2t
2 , which implies E [y(t)] =¡

α− 1
2
σ2
¢
t and V(y(t)) = σ2t

I Thus, Ex0 [x(t)] = Ex0 [x0ey(t)] = x0my(1) = x0e
αt and Vx0(x(t)) =

Ex0 [(x(t))2]−(Ex0 [x(t)])2 = x20Ex0 [e2y(t)]−x20e2αt = x20e2αt[eσ
2t−1]
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GEOMETRIC BROWNIAN 
MOTION TRAJECTORIES

F Expected PV of a GBM assuming discount rate
r > α is Ex0

£R∞
0
x(t)e−rtdt

¤
=
R∞
0
Ex0[x(t)]e−rtdt =R∞

0
x0e

αte−rtdt = x0
r−α

F Generate sample paths for α = 0.09 and σ = 0.2 per
annum using x1950 = 100 and one-month intervals, i.e.,
xt−xt−1 = 0.0075xt−1+0.0577xt−1²t, where ²t ∼ N (0, 1)
(Figure 3.4)
I Trend line is obtained by setting ²t = 0
I Optimal forecast given x1974 is x̂1974+T = (1.0075)Tx1974, while

the CI is (1.0075)T (1.0577)±
√
Tx1974 (Figure 3.5)
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GEOMETRIC BROWNIAN MOTION 
TRAJECTORIES: Figures 3.4 and 3.5
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MEAN-REVERTING PROCESSES

F Certain commodity prices tend to stay near their
long-run marginal production costs, e.g., oil or copper

F Simplest mean-reverting (MR) process is the Ornstein-
Uhlenbeck process: dx = η(x− x)dt+ σdz
I Satisfies the Markov property but does not have independent in-
crements

I Given x(t) = x0, we have Ex0 [x(t)] = x+(x0−x)e−ηt and Vx0 [x(t)−
x] = σ2

2η
(1− e−2ηt)

I Note that as t → ∞, the mean converges to x and the variance
converges to σ2

2η

I As η →∞, the variance goes to zero
I As η → 0, {x(t), t ≥ 0} becomes a BM with variance σ2t
I Figure 3.6 shows sample paths for x = 1, x0 = 1, σ = 0.05, and
various values of η

I Figure 3.7 shows the optimal forecast and CI
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MEAN-REVERTING 
PROCESSES: Figures 3.6 and 3.7
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MEAN-REVERTING PROCESSES

F Equation for first-order autoregressive process is xt −
xt−1 = x(1−e−η)+(e−η−1)xt−1+²t, where ²t ∼ N (0,σ²)
and σ2² =

σ2

2η
(1− e−2η)

I Estimate parameters by running the regression xt − xt−1 = a +
bxt−1 + ²t

I Thus, x = − â

b̂
, η̂ = − ln(1 + b̂), and σ̂2 = σ̂2² ln(1+b̂)

2

(1+b̂)2−1

F Can also have a geometric MR process: dx =
ηx(x− x)dt+ σxdz

F In order to check for mean reversion, perform unit root
tests on many years of data
I Figures 3.8 and 3.9 indicate that commodity prices are mean re-
verting but with a low rate of mean reversion
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MEAN-REVERTING 
PROCESSES: Figures 3.8 and 3.9
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ITÔ’S LEMMA

F Itô‘s lemma allows us to integrate and differentiate func-
tions of Itô processes
I Recall Taylor series expansion for F (x, t): dF = ∂F

∂x
dx + ∂F

∂t
dt +

1
2
∂2F
∂x2

(dx)2 + 1
6
∂3F
∂x3

(dx)3 + · · ·
I Usually, higher-order terms vanish, but here (dx)2 = b2(x, t)dt

(once terms in (dt)
3
2 and (dt)2 are ignored), which is linear in dt

I Thus, dF = ∂F
∂x
dx + ∂F

∂t
dt + 1

2
∂2F
∂x2

(dx)2 ⇒ dF =h
∂F
∂t
+ a(x, t) ∂F

∂x
+ 1

2
b2(x, t)∂

2F
∂x2

i
dt+ b(x, t) ∂F

∂x
dz

I Intuitively, even if a(x, t) = 0 and ∂F
∂t

= 0, then E[dx] = 0, but
E[dF ] 6= 0 because of Jensen‘s inequality

F Generalise to m Itô processes with dxi =
ai(x1, . . . , xm, t)dt + bi(x1, . . . , xm, t)dxi and E [dzidzj] =
ρijdt: dF =

∂F
∂t
dt+

P
i
∂F
∂xi
dxi +

1
2

P
i

P
j

∂2F
∂xi∂xj

dxidxj
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APPLICATION TO GBM
F If dx = αxdt+σxdz and F (x) = ln(x), then F (x) follows
a BM with parameters α− 1

2
σ2 and σ

I ∂F
∂t = 0, ∂F∂x = 1

x ,
∂2F
∂x2

= − 1
x2
, which implies that dF = dx

x −
1
2x2
(dx)2 = αdt+ σdz − 1

2
σ2dt = (α− 1

2
σ2)dt+ σdz

F Consider F (x, y) = xy and G = lnF with dx = αxxdt+
σxxdzx, dy = αyydt+ σyydzy, and E [dzxdzy] = ρdt
I ∂2F

∂x2
= ∂2F

∂y2
= 0 and ∂2F

∂x∂y
= 1, which implies dF = ydx+xdy+dxdy

I Substitute dx and dy: dF = αxxydt + σxxydzx + αyxydt +
σyxydzy + xyσxσyρdt ⇒ dF = (αx + αy + ρσxσy)Fdt+ (σxdzx +
σydzy)F , i.e., F is also a GBM

I Meanwhile, dG = (αx + αy − 1
2σ

2
x − 1

2σ
2
y)dt+ σxdzx + σydzy

F Discounted PV: F (x) = xθ and x follows a GBM
I F follows a GBM, too: dF = θxθ−1dx + 1

2θ(θ −
1)xθ−1(dx)2 = F [θα + 1

2θ(θ − 1)σ2]dt + θσFdz ⇒ Ex0 [F (x(t))] =
F (x0)e

t(θα+ 1
2
θ(θ−1)σ2)

I Thus, Ex0
£R∞
0
F (x(t))e−rtdt

¤
=

xθ0
r−αθ− 1

2
θ(θ−1)σ2
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STOCHASTIC DISCOUNT 
FACTOR
F Proposition: The conditional expectation of the stochas-
tic discount factor, Ep [e−ρτ ], is the power function,³
p
PI

´β1
, where τ ≡ min {t : Pt ≥ PI}

F Proof: Let g(p) ≡ Ep [e−ρτ ]
I g(p) = o(dt)e−ρdt + (1− o(dt))e−ρdtEp [g(p+ dP )]
I ⇒ g(p) = o(dt)e−ρdt + (1 −
o(dt))e−ρdtEp

h
g(p) + dPg

0
(p) + 1

2
(dP )2g

00
(p) + o(dt)

i
I ⇒ g(p) = o(dt) + e−ρdtg(p) + e−ρdtαpg

0
(p)dt+ e−ρdt 1

2
σ2p2g

00
(p)dt

I ⇒ g(p) = o(dt) + (1 − ρdt)g(p) + (1 − ρdt)αpg
0
(p)dt + (1 −

ρdt) 1
2
σ2p2g

00
(p)dt

I ⇒ −ρg(p) + αpg
0
(p) + 1

2
σ2p2g

00
(p) = o(dt)

dt

I ⇒ g(p) = a1p
β1 + a2p

β2

I limp→0 g(p) = 0⇒ a2 = 0 and g(PI) = 1⇒ a1 =
1

P
β1
I
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DYNAMIC PROGRAMMING: 
Many-Period Example
F Now, let the state variable xt be continuous and the con-
trol variable ut represent the possible choices made at
time t
I Let the immediate profit flow be πt(xt, ut) and Φt(xt+1|xt, ut) be
the CDF of the state variable next period given current information

I Given the discount rate ρ and the Bellman Principle of Optimality,
the expected NPV of the cash flows to go from period t is Ft(xt) =

maxut

n
πt(xt, ut) +

1
(1+ρ)

Et[Ft+1(xt+1)]
o

I Use the termination value at time T and work back-
wards to solve for successive values of ut: FT−1(xT−1) =

maxuT−1

n
πT−1(xT−1, uT−1) + 1

(1+ρ)
ET−1[ΩT (xT )]

o
F With an infinite horizon, it is possible to solve the prob-
lem recursively due to independence from time and the
downward scaling due to the discount factor: F (x) =

maxu

n
π(x, u) + 1

(1+ρ)
E [F (x0)|x, u]

o
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DYNAMIC PROGRAMMING: 
Optimal Stopping
F Suppose that the choice is binary: either continue (to
wait or to produce) or to terminate (waiting or produc-
tion)
I Bellman equation is now max

n
Ω(x),π(x) + 1

(1+ρ)
E[F (x0)|x]

o
I Focus on case where it is optimal to continue for x > x∗ and stop
otherwise

I Continuation is more attractive for higher x if: (i) immediate profit
from continuation becomes larger relative to the termination pay-
off, i.e., π(x) + 1

(1+ρ)
E [Ω(x0)|x] − Ω(x) is increasing in x, and (ii)

current advantage should not be likely to be reversed in the near
future, i.e., require first-order stochastic dominance

I Both conditions are satisfied in the applications studied here: (i)
always holds, and (ii) is true for random walks, Brownian motion,
MR processes, and most other economic applications

I In general, may have stopping threshold that varies with time,
x∗(t)
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DYNAMIC PROGRAMMING: 
Continuous Time
F In continuous time, the length of the time period, ∆t,
goes to zero and all cash flows are expressed in terms of
rates
I Bellman equation is now F (x, t) =

maxu
n
π(x, u, t)∆t+ 1

(1+ρ∆t)
E [F (x0, t+∆t)|x, u]

o
I Multiply by (1 + ρ∆t) and re-arrange: ρ∆tF (x, t) =
maxu {π(x, u, t)∆t(1 + ρ∆t) + E[F (x0, t+∆t)− F (x, t)|x, u]} =
maxu {π(x, u, t)∆t(1 + ρ∆t) + E[∆F |x, u]}

I Divide by ∆t and let it go to zero to obtain ρF (x, t) =

maxu
n
π(x, u, t) + E[dF |x,u]

dt

o
I Intuitively, the instantaneous rate of return on the asset must equal
its expected net appreciation
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DYNAMIC PROGRAMMING: Itô
Processes
F Suppose that dx = a(x, u, t)dt + b(x, u, t)dz and x0 =
x+ dx

F Apply Itô’s lemma to the value function, F :
I E[F (x+∆, t +∆t)|x, u] = F (x, t) + [Ft(x, t) + a(x, u, t)Fx(x, t) +

1
2
b2(x, u, t)Fxx(x, t)]∆t+ o(∆t)

I Return equilibrium condition is now ρF (x, t) =
maxu

©
π(x, u, t) + Ft(x, t) + a(x, u, t)Fx(x, t) +

1
2
b2(x, u, t)Fxx(x, t)

ª
I Next, find optimal u as a function of Ft(x, t), Fx(x, t), Fxx(x, t),
x, t, and underlying parameters

I Subsitute it back into the return equilibrium condition to obtain
a second-order PDE with F as the dependent variable and x and
t as the independent ones

I Solution procedure is typically to start at the terminal time T and
work backwards

F When time horizon is infinite, t drops out of the equation:
I ρF (x) = maxu

©
π(x, u) + a(x, u)F 0(x) + 1

2
b2(x, u)F 00(x)

ª
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DYNAMIC PROGRAMMING: Optimal 
Stopping and Smooth Pasting
F Consider a binary decision problem: can either continue
to obtain a profit flow (with continuation value) or stop
to obtain a termination payoff where dx = a(x, t)dt +
b(x, t)dz
I In this case, a threshold policy with x∗(t) exists, and the Bellman
equation is ρF (x, t)dt = max {Ω(x, t)dt,π(x, t)dt+ E[dF |x]}

I The RHS is larger in the continuation region, so applying Itô’s
lemma gives 1

2
b2(x, t)Fxx(x, t)+a(x, t)Fx(x, t)+Ft(x, t)−ρF (x, t)+

π(x, t) = 0
I The PDE can be solved for F (x, t) for x > x∗(t) subject to the
boundary condition F (x∗(t), t) = Ω(x∗(t), t) ∀t (value-matching
condition)

I A second condition is necessary to find the free boundary:
Fx(x

∗(t), t) = Ωx(x
∗(t), t) ∀t (smooth-pasting condition)

I The latter may be thought of as a first-order necessary condition,
i.e., if the two curves met at a kink, then the optimal stopping
would occur elsewhere
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DYNAMIC PROGRAMMING 
EXAMPLE: Optimal Abandonment
F You own a machine that produces profit, x, that evolves
according to a BM process, i.e., dx = adt + bdz, where
a < 0 to reflect decay of the machine over time

F The lifetime of the machine is T years, discount rate is
ρ, and we must find the optimal threshold profit level,
x∗(t), below which to abandon the machine (zero salvage
value)
I Corresponding PDE is 1

2
b2Fxx(x, t)+aFx(x, t)+Ft(x, t)−ρF (x, t)+

x = 0
I PDE is solved numerically for T = 10, a = −0.1, b = 0.2, and

ρ = 0.10 using discrete time steps of ∆t = 0.01
I Solution in Figure 4.1 indicates that for lifetimes greater than ten
years, the optimal abandonment threshold is about -0.17

I As lifetime is reduced, it becomes easier to abandon the machine
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DYNAMIC PROGRAMMING 
EXAMPLE: Figure 4.1
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DYNAMIC PROGRAMMING 
EXAMPLE: Optimal Abandonment

F Assume an effectively infinite lifetime to obtain an ODE
instead of a PDE: 1

2
b2F 00(x) + aF 0(x)− ρF (x) + x = 0

I Homogeneous solution is y(x) = c1e
r1x + c2e

r2x

I Substituting derivatives into the homogeneous portion of the ODE
yields c1e

r1x( 1
2
b2r21 + ar1 − ρ) + c2er2x( 12b2r22 + ar2 − ρ) = 0

I The terms in the parentheses must be equal to zero, i.e., r1 =
−a+
√
a2+2bρ

b2
= 5.584 > 0 and r2 =

−a−
√
a2+2bρ

b2
= −0.854 < 0

I Particular solution: Y (x) = Ax+B, Y 0(x) = A, and Y 00(x) = 0
I Substituting these into the original ODE yields aA− ρ(Ax+B)+
x = 0⇒ A = 1

ρ
, B = a

ρ2

I Thus, Y (x) = x
ρ
+ a

ρ2
, and F (x) = c1e

r1x + c2e
r2x + x

ρ
+ a

ρ2

I Boundary conditions: (i) F (x∗) = 0, (ii) F 0(x∗) = 0, (iii)
limx→∞ F (x) = Y (x)

I The third one implies that c1 = 0, i.e., F (x) = c2e
r2x + x

ρ
+ a

ρ2

I First two conditions imply x∗ = −a
ρ
+ 1

r2
= −0.17 and c2 =

− e−r2x
∗

r2ρ
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CONTINGENT CLAIMS: 
Replicating Portfolio

F Dynamic programming uses an exogenous discount rate,
ρ, which is assumed to the opportunity cost of capital

F Financial theory has a more sophisticated treatment of
this topic in terms of relating this cost to the market
portfolio
I Assume profit flow, x, follows a GBM and the output of the firm
can be traded in financial markets

I Output held by investors if it provides a sufficiently high return:
part of it from α and another from the convenience yield, δ = μ−α

I The risk-adjusted rate of return is obtained from CAPM: μ =
r + φσρxm, where φ is the market price of risk and ρxm is the
correlation between returns
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CONTINGENT CLAIMS: 
Replicating Portfolio

F Value of a firm, F (x, t), with profit flow, π(x, t), may be
replicated by investing a dollar in the risk-free asset and
holding n units of the output
I Portfolio costs $(1 + nx), and if held for dt time units, then it
provides a safe return of rdt, a dividend of nδxdt, and a stochastic
capital gain of ndx = nαxdt+ nσxdz

I The total return per dollar invested is r+n(α+δ)x
1+nx

dt+ σnx
1+nx

dz
I Ownership of the firm over dt costs F (x, t) and offers a profit flow

π(x, t)dt along with a stochastic capital gain dF = [Ft(x, t) +
αxFx(x, t) +

1
2
σ2x2Fxx(x, t)]dt+ σxFx(x, t)dz

I Thus, total return per dollar is
π(x,t)+Ft(x,t)+αxFx(x,t)+

1
2
σ2x2Fxx(x,t)

F (x,t)
dt+ σxFx(x,t)

F (x,t)
dz
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CONTINGENT CLAIMS: 
Replicating Portfolio

F Matching the risk terms gives nx
(1+nx)

= xFx(x,t)
F (x,t)

⇒ n =
Fx(x,t)

(F (x,t)−xFx(x,t))
I Matching the return terms gives

π(x,t)+Ft(x,t)+αxFx(x,t)+
1
2
σ2x2Fxx(x,t)

F (x,t)
= r+n(α+δ)x

1+nx

I Substituting for n implies that the RHS becomes
r (F (x,t)−xFx(x,t))

F (x,t) + (α+ δ)xFx(x,t)F (x,t)

I Re-arranging the return equation then yields 1
2
σ2x2Fxx(x, t)+(r−

δ)xFx(x, t) + Ft(x, t)− rF (x, t) + π(x, t) = 0
I Similar to the PDE obtained via dynamic programming
I Can also use a risk-free portfolio by holding one unit of F (x, t) and
n units short of the underlying asset x
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CONTINGENT CLAIMS: Spanning 
Assets

F If x is not directly traded, then we can use a spanning
asset, i.e., one whose risk tracks the uncertainty in x
I Suppose replicating asset follows dX = A(x, t)Xdt + B(x, t)Xdz,
i.e., have the same dz even if the other coefficients are different

I If there is a dividend flow rate, D(x, t), then one dollar invested in
X over time dt provides the return [D(x, t)+A(x, t)]dt+B(x, t)dz

I An investor will require return μX(x, t) = r + φρxmB(x, t), which
must equal D(x, t) +A(x, t)

F Risk-free portfolio will cost F − nX to buy and provide
dividend flows of [π − nDX]dt
I Capital gain on the portfolio is dF −ndX = [Ft+ aFx+

1
2
b2Fxx−

nAX]dt+ [bFx − nBX]dz, so risk-free portfolio requires n = bFx
BX

I Set expected net return on portfolio to the risk-free return on its
cost: r[F −nX]dt = [Ft+aFx+ 1

2b
2Fxx−nAX]dt+πdt−nDXdt

I Thus: 1
2
b2Fxx + aFx + Ft − rF + rnX − nDX − nAX + π = 0⇒

1
2
b2Fxx + aFx + FtrF +

rbFx
B
− DbFx

B
− AbFx

B
+ π = 0

I 1
2
b2Fxx + aFx + Ft − rF + rbFx

B
− μXbFx

B
+ π = 0
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QUESTIONS


