TIØ 1: Financial Engineering in Energy Markets

Afzal Siddiqui

Department of Statistical Science
University College London
London WC1E 6BT, UK
afzal@stats.ucl.ac.uk

COURSE OUTLINE

* Introduction (Chs 1-2)
* Mathematical Background (Chs 3-4)

夫 Investment and Operational Timing (Chs 5-6)
\star Entry, Exit, Lay-Up, and Scrapping (Ch 7)
\star Recent Theoretical Work I: Capacity Sizing
\star Recent Theoretical Work II: Risk Aversion and Multiple Risk Factors

* Applications to the Energy Sector I: Capacity Sizing, Timing, and Operational Flexibility
* Applications to the Energy Sector II: Modularity and Technology Choice

LECTURE OUTLINE

* Stochastic processes
* Wiener process and GBM
* Itô's lemma
* Dynamic programming
* Contingent claims

STOCHASTIC PROCESSES: Discrete Time and Discrete State

* A variable that evolves over time in at least a partially random manner is a stochastic process
* More formally, a stochastic process is a law for the evolution of variable x_{t} over time t that allows us to calculate for various $t_{1}<t_{2}<t_{3}<\ldots$ the joint probability $\mathcal{P}\left\{a_{1}<x_{1} \leq b_{1}, a_{2}<x_{2} \leq b_{2}, a_{3}<x_{3} \leq b_{3}, \ldots\right\}$
- Stationary processes have statistical properties that are constant over long periods of time, e.g., temperature
- Non-stationary processes may be things like stock prices Discrete-time processes change values only at discrete points in time, e.g., random walk
- Starting with x_{0}, x_{t} takes independent jumps of size 1 (either up or down) at discrete points $t=1,2,3, \ldots$ each with probability $\frac{1}{2}$
- Thus, x_{t} has a binomial distribution: $\mathcal{P}\left[x_{t}=t-2 n\right]=$ $\binom{t}{n}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}\right)^{t-n}=\binom{t}{n} 2^{-t}$ is the probability that there are n downward jumps and $t-n$ upward jumps by time t

STOCHASTIC PROCESSES: Discrete Time and Continuous State

* Instead of being a Bernoulli RV, the size of each jump may be a continuous RV, e.g., normal with mean zero and SD σ
* Another example is a first-order AR process, i.e., $\operatorname{AR}(1)$: $x_{t}=\delta+\rho x_{t-1}+\epsilon_{t}$, where $-1<\rho<1$ and ϵ_{t} is a standard normal RV
- Stationary process with long-run expected value $\frac{\delta}{1-\rho}$
- A mean-reverting process
* Both the random walk and $\operatorname{AR}(1)$ are Markov processes, i.e., the probability distribution for x_{t+1} depends only on x_{t} and is independent of anything that happened before time t

STOCHASTIC PROCESSES:
 Continuous Time

* A Wiener process (or Brownian motion) has the following properties:
- Markov process
- Independent increments
- Changes over any finite time interval are normally distributed with variance that increases linearly in time
* Nice property that past patterns have no forecasting value
* For prices, it makes more sense to assume that changes in their logarithms are normally distributed, i.e., prices are lognormally distributed
* More formally for a Wiener process $\{z(t), t \geq 0\}$:
- $\Delta z=\epsilon_{t} \sqrt{\Delta t}$, where $\epsilon_{t} \sim \mathcal{N}(0,1)$
- ϵ_{t} are serially uncorrelated, i.e., $\mathcal{E}\left[\epsilon_{t} \epsilon_{s}\right]=0$ for $t \neq s$

STOCHASTIC PROCESSES:

Continuous Time

* Implications of the two conditions are examined by breaking up the time interval T into n units of length Δt each
\checkmark Change in z over T is $z(s+T)-z(s)=\sum_{i=1}^{n} \epsilon_{i} \sqrt{\Delta t}$, where the ϵ_{i} are independent
- Via the CLT, $z(s+T)-z(s)$ is $\mathcal{N}(0, n \Delta t=T)$
- Variance of the changes increases linearly in time
\star Letting Δt become infinitesimally small implies $d z=$ $\epsilon_{t} \sqrt{d t}$, where $\epsilon_{t} \sim \mathcal{N}(0,1)$
\star This implies that $\mathcal{E}[d z]=0$ and $\mathcal{V}(d z)=\mathcal{E}\left[(d z)^{2}\right]=d t$
\star Coefficient of correlation between two Wiener processes, $z_{1}(t)$ and $z_{2}(t): \mathcal{E}\left[d z_{1} d z_{2}\right]=\rho_{12} d t$

STOCHASTIC PROCESSES: Brownian Motion with Drift

* Generalise the Wiener process: $d x=\alpha d t+\sigma d z$, where $d z$ is the increment of the Wiener process, α is the drift parameter, and σ is the variance parameter
- Over time interval $\Delta t, \Delta x$ is normal with mean $\mathcal{E}[\Delta x]=\alpha \Delta t$ and variance $\mathcal{V}(\Delta x)=\sigma^{2} \Delta t$
- Given x_{0}, it is possible to generate sample paths
- For example, if $\alpha=0.2$ and $\sigma=1.0$, then the discretisation with $\Delta t=\frac{1}{12}$ is $x_{t}=x_{t-1}+0.01667+0.2887 \epsilon_{t}$ (Figure 3.1)
\star Optimal forecast is $\hat{x}_{t+T}=x_{t}+0.01667 T$ and $66 \% \mathrm{CI}$ is $x_{t}+0.01667 T \pm 0.2887 \sqrt{T}$ (Figure 3.2)
* Mean of $x_{t}-x_{0}$ is αt and its SD is $\sigma \sqrt{t}$, so the trend dominates in the long run

STOCHASTIC PROCESSES: Figures 3.1 and 3.2

Figure 3.1. Sample Paths of Brownian Motion with Drift

Figure 3.2. Optimal Forecast of Brownian Motion with Drift

STOCHASTIC PROCESSES: Brownian Motion and Random Walks

* Suppose that a discrete-time random walk for which the position is described by variable x makes jumps of $\pm \Delta h$ every Δt time units given the initial position x_{0}
- The probability of an upward (downward) jump is $p(q=1-p)$
- Thus, x follows a Markov process with independent increments, i.e., probability distribution of its future position depends only on its current position (Figure 3.3)
\star Mean: $\mathcal{E}[\Delta x]=(p-q) \Delta h$; second moment: $\mathcal{E}\left[(\Delta x)^{2}\right]=$ $p(\Delta h)^{2}+q(\Delta h)^{2}=(\Delta h)^{2}$; variance: $\mathcal{V}(\Delta x)=(\Delta h)^{2}[1-$ $\left.(p-q)^{2}\right]=\left[1-(2 p-1)^{2}\right](\Delta h)^{2}=4 p q(\Delta h)^{2}$
Thus, if t has $n=\frac{t}{\Delta t}$ steps, then $x_{t}-x_{0}$ is a binomial RV with mean $n \mathcal{E}[\Delta x]=\frac{t(p-q) \Delta h}{\Delta t}$ and variance $n \mathcal{V}(\Delta x)=$ $\frac{4 p q t(\Delta h)^{2}}{\Delta t}$

STOCHASTIC PROCESSES: Figure 3.3

Figure 3.3. Random Walk Representation of Brownian Motion

STOCHASTIC PROCESSES: Brownian Motion and Random Walks

* Choose $\Delta h, \Delta t, p$, and q so that the random walk converges to a Brownian motion as $\Delta t \rightarrow 0$
- $\Delta h=\sigma \sqrt{\Delta t}$
- $p=\frac{1}{2}\left[1+\frac{\alpha}{\sigma} \sqrt{\Delta t}\right], q=\frac{1}{2}\left[1-\frac{\alpha}{\sigma} \sqrt{\Delta t}\right]$
- Thus, $p-q=\frac{\alpha}{\sigma} \sqrt{\Delta t}=\frac{\alpha}{\sigma^{2}} \Delta h$

Substitute these into the formulas for the mean and variance $x_{t}-x_{0}$:

- Mean: $\mathcal{E}\left[x_{t}-x_{0}\right]=\frac{t \alpha(\Delta h)^{2}}{\sigma^{2} \Delta t}=\frac{t \alpha \sigma^{2} \Delta t}{\sigma^{2} \Delta t}=\alpha t$; variance: $\mathcal{V}\left(x_{t}-x_{0}\right)=$

$$
\frac{4 p q t(\Delta h)^{2}}{\Delta t}=\frac{4 t \sigma^{2} \Delta t\left[1-\frac{\alpha^{2}}{\sigma^{2}} \Delta t\right]}{4 \Delta t}=t \sigma^{2}\left[1-\frac{\alpha^{2}}{\sigma^{2}} \Delta t\right] \text {, which goes to } t \sigma^{2}
$$

$$
\text { as } \Delta t \rightarrow 0
$$

* Hence, these are the mean and variance of a Brownian motion; furthermore, the binomial distribution approaches the normal one for large n

GENERALISED BROWNIAN MOTION

An Itô process is $d x=a(x, t) d t+b(x, t) d z$, where $d z$ is the increment of a Wiener process, and both $a(x, t)$ and $b(x, t)$ are known but may be functions of both x and t

- Mean: $\mathcal{E}[d x]=a(x, t) d t ;$ second moment: $\mathcal{E}\left[(d x)^{2}\right]=$ $\mathcal{E}\left[a^{2}(x, t)(d t)^{2}+b^{2}(x, t)(d z)^{2}+2 a(x, t) b(x, t) d t d z\right]=b^{2}(x, t) d t ;$ variance: $\mathcal{V}(d x)=\mathcal{E}\left[(d x)^{2}\right]-(\mathcal{E}[d x])^{2}=b^{2}(x, t) d t$
A geometric Brownian motion (GBM) has $a(x, t)=\alpha x$ and $b(x, t)=\sigma x$, which implies $d x=\alpha x d t+\sigma x d z$
- Percentage changes in x are normally distributed, or absolute changes in x are lognormally distributed
- If $\{y(t), t \geq 0\}$ is a BM with parameters $\left(\alpha-\frac{1}{2} \sigma^{2}\right) t$ and $\sigma^{2} t$, then $\left\{x(t) \equiv x_{0} e^{y(t)}, t \geq 0\right\}$ is a GBM
- $m_{y}(s)=\mathcal{E}\left[e^{s y(t)}\right]=e^{s \alpha t-\frac{s \sigma^{2} t}{2}+\frac{s^{2} \sigma^{2} t}{2}}$, which implies $\mathcal{E}[y(t)]=$ $\left(\alpha-\frac{1}{2} \sigma^{2}\right) t$ and $\mathcal{V}(y(t))=\sigma^{2} t$
- Thus, $\mathcal{E}_{x_{0}}[x(t)]=\mathcal{E}_{x_{0}}\left[x_{0} e^{y(t)}\right]=x_{0} m_{y}(1)=x_{0} e^{\alpha t}$ and $\mathcal{V}_{x_{0}}(x(t))=$ $\mathcal{E}_{x_{0}}\left[(x(t))^{2}\right]-\left(\mathcal{E}_{x_{0}}[x(t)]\right)^{2}=x_{0}^{2} \mathcal{E}_{x_{0}}\left[e^{2 y(t)}\right]-x_{0}^{2} e^{2 \alpha t}=x_{0}^{2} e^{2 \alpha t}\left[e^{\sigma^{2} t}-1\right]$

GEOMETRIC BROWNIAN MOTION TRAJECTORIES

\star Expected PV of a GBM assuming discount rate $r>\alpha$ is $\mathcal{E}_{x_{0}}\left[\int_{0}^{\infty} x(t) e^{-r t} d t\right]=\int_{0}^{\infty} \mathcal{E}_{x_{0}}[x(t)] e^{-r t} d t=$ $\int_{0}^{\infty} x_{0} e^{\alpha t} e^{-r t} d t=\frac{x_{0}}{r-\alpha}$

Generate sample paths for $\alpha=0.09$ and $\sigma=0.2$ per annum using $x_{1950}=100$ and one-month intervals, i.e., $x_{t}-x_{t-1}=0.0075 x_{t-1}+0.0577 x_{t-1} \epsilon_{t}$, where $\epsilon_{t} \sim \mathcal{N}(0,1)$ (Figure 3.4)

- Trend line is obtained by setting $\epsilon_{t}=0$
- Optimal forecast given x_{1974} is $\hat{x}_{1974+T}=(1.0075)^{T} x_{1974}$, while the CI is $(1.0075)^{T}(1.0577)^{ \pm \sqrt{T}} x_{1974}$ (Figure 3.5)

GEOMETRIC BROWNIAN MOTION TRAJECTORIES: Figures 3.4 and 3.5

Figure 3.5. Optimal Forecast of Geometric Brownian Motion

MEAN-REVERTING PROCESSES

* Certain commodity prices tend to stay near their long-run marginal production costs, e.g., oil or copper
* Simplest mean-reverting (MR) process is the OrnsteinUhlenbeck process: $d x=\eta(\bar{x}-x) d t+\sigma d z$
- Satisfies the Markov property but does not have independent increments
- Given $x(t)=x_{0}$, we have $\mathcal{E}_{x_{0}}[x(t)]=\bar{x}+\left(x_{0}-\bar{x}\right) e^{-\eta t}$ and $V_{x_{0}}[x(t)-$ $\bar{x}]=\frac{\sigma^{2}}{2 \eta}\left(1-e^{-2 \eta t}\right)$
- Note that as $t \rightarrow \infty$, the mean converges to \bar{x} and the variance converges to $\frac{\sigma^{2}}{2 \eta}$
- As $\eta \rightarrow \infty$, the variance goes to zero
- As $\eta \rightarrow 0,\{x(t), t \geq 0\}$ becomes a BM with variance $\sigma^{2} t$
- Figure 3.6 shows sample paths for $\bar{x}=1, x_{0}=1, \sigma=0.05$, and various values of η
Figure 3.7 shows the optimal forecast and CI

MEAN-REVERTING PROCESSES: Figures 3.6 and 3.7

Figure 3.6. Sample Paths of Mean-Reverting Process: $d x=\eta(\bar{x}-x) d t+\sigma d z$

MEAN-REVERTING PROCESSES

* Equation for first-order autoregressive process is $x_{t}-$ $x_{t-1}=\bar{x}\left(1-e^{-\eta}\right)+\left(e^{-\eta}-1\right) x_{t-1}+\epsilon_{t}$, where $\epsilon_{t} \sim \mathcal{N}\left(0, \sigma_{\epsilon}\right)$ and $\sigma_{\epsilon}^{2}=\frac{\sigma^{2}}{2 \eta}\left(1-e^{-2 \eta}\right)$
- Estimate parameters by running the regression $x_{t}-x_{t-1}=a+$ $b x_{t-1}+\epsilon_{t}$
- Thus, $\bar{x}=-\frac{\hat{a}}{\hat{b}}, \hat{\eta}=-\ln (1+\hat{b})$, and $\hat{\sigma}^{2}=\frac{\hat{\sigma}_{\epsilon}^{2} \ln (1+\hat{b})^{2}}{(1+\hat{b})^{2}-1}$
* Can also have a geometric MR process: $d x=$ $\eta x(\bar{x}-x) d t+\sigma x d z$
* In order to check for mean reversion, perform unit root tests on many years of data
- Figures 3.8 and 3.9 indicate that commodity prices are mean reverting but with a low rate of mean reversion

MEAN-REVERTING PROCESSES: Figures 3.8 and 3.9

Figure 3.9. Price of Copper in 1907 Cents per Pound

ITÔ'S LEMMA

* Itô's lemma allows us to integrate and differentiate functions of Itô processes
- Recall Taylor series expansion for $F(x, t): d F=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial t} d t+$ $\frac{1}{2} \frac{\partial^{2} F}{\partial x^{2}}(d x)^{2}+\frac{1}{6} \frac{\partial^{3} F}{\partial x^{3}}(d x)^{3}+\cdots$
- Usually, higher-order terms vanish, but here $(d x)^{2}=b^{2}(x, t) d t$ (once terms in $(d t)^{\frac{3}{2}}$ and $(d t)^{2}$ are ignored), which is linear in $d t$
- Thus, $d F=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial t} d t+\frac{1}{2} \frac{\partial^{2} F}{\partial x^{2}}(d x)^{2} \Rightarrow d F=$ $\left[\frac{\partial F}{\partial t}+a(x, t) \frac{\partial F}{\partial x}+\frac{1}{2} b^{2}(x, t) \frac{\partial^{2} F}{\partial x^{2}}\right] d t+b(x, t) \frac{\partial F}{\partial x} d z$
- Intuitively, even if $a(x, t)=0$ and $\frac{\partial F}{\partial t}=0$, then $\mathcal{E}[d x]=0$, but $\mathcal{E}[d F] \neq 0$ because of Jensen's inequality

Generalise to m Itô processes with $d x_{i}=$ $a_{i}\left(x_{1}, \ldots, x_{m}, t\right) d t+b_{i}\left(x_{1}, \ldots, x_{m}, t\right) d x_{i}$ and $\mathcal{E}\left[d z_{i} d z_{j}\right]=$ $\rho_{i j} d t: d F=\frac{\partial F}{\partial t} d t+\sum_{i} \frac{\partial F}{\partial x_{i}} d x_{i}+\frac{1}{2} \sum_{i} \sum_{j} \frac{\partial^{2} F}{\partial x_{i} \partial x_{j}} d x_{i} d x_{j}$

APPLICATION TO GBM

\star If $d x=\alpha x d t+\sigma x d z$ and $F(x)=\ln (x)$, then $F(x)$ follows a BM with parameters $\alpha-\frac{1}{2} \sigma^{2}$ and σ

- $\frac{\partial F}{\partial t}=0, \frac{\partial F}{\partial x}=\frac{1}{x}, \frac{\partial^{2} F}{\partial x^{2}}=-\frac{1}{x^{2}}$, which implies that $d F=\frac{d x}{x}-$ $\frac{1}{2 x^{2}}(d x)^{2}=\alpha d t+\sigma d z-\frac{1}{2} \sigma^{2} d t=\left(\alpha-\frac{1}{2} \sigma^{2}\right) d t+\sigma d z$
* Consider $F(x, y)=x y$ and $G=\ln F$ with $d x=\alpha_{x} x d t+$ $\sigma_{x} x d z_{x}, d y=\alpha_{y} y d t+\sigma_{y} y d z_{y}$, and $\mathcal{E}\left[d z_{x} d z_{y}\right]=\rho d t$
- $\frac{\partial^{2} F}{\partial x^{2}}=\frac{\partial^{2} F}{\partial y^{2}}=0$ and $\frac{\partial^{2} F}{\partial x \partial y}=1$, which implies $d F=y d x+x d y+d x d y$
- Substitute $d x$ and $d y: d F=\alpha_{x} x y d t+\sigma_{x} x y d z_{x}+\alpha_{y} x y d t+$ $\sigma_{y} x y d z_{y}+x y \sigma_{x} \sigma_{y} \rho d t \Rightarrow d F=\left(\alpha_{x}+\alpha_{y}+\rho \sigma_{x} \sigma_{y}\right) F d t+\left(\sigma_{x} d z_{x}+\right.$ $\left.\sigma_{y} d z_{y}\right) F$, i.e., F is also a GBM
- Meanwhile, $d G=\left(\alpha_{x}+\alpha_{y}-\frac{1}{2} \sigma_{x}^{2}-\frac{1}{2} \sigma_{y}^{2}\right) d t+\sigma_{x} d z_{x}+\sigma_{y} d z_{y}$ Discounted PV: $F(x)=x^{\theta}$ and x follows a GBM
$\rightarrow F$ follows a GBM, too: $d F=\theta x^{\theta-1} d x+\frac{1}{2} \theta(\theta-$ 1) $x^{\theta-1}(d x)^{2}=F\left[\theta \alpha+\frac{1}{2} \theta(\theta-1) \sigma^{2}\right] d t+\theta \sigma F d z \Rightarrow \mathcal{E}_{x_{0}}[F(x(t))]=$ $F\left(x_{0}\right) e^{t\left(\theta \alpha+\frac{1}{2} \theta(\theta-1) \sigma^{2}\right)}$

STOCHASTIC DISCOUNT FACTOR

* Proposition: The conditional expectation of the stochastic discount factor, $\mathcal{E}_{p}\left[e^{-\rho \tau}\right]$, is the power function, $\left(\frac{p}{P_{I}}\right)^{\beta_{1}}$, where $\tau \equiv \min \left\{t: P_{t} \geq P_{I}\right\}$
\star Proof: Let $g(p) \equiv \mathcal{E}_{p}\left[e^{-\rho \tau}\right]$
- $g(p)=o(d t) e^{-\rho d t}+(1-o(d t)) e^{-\rho d t} \mathcal{E}_{p}[g(p+d P)]$
- $\Rightarrow \quad g(p) \quad=\quad o(d t) e^{-\rho d t}$ $o(d t)) e^{-\rho d t} \mathcal{E}_{p}\left[g(p)+d P g^{\prime}(p)+\frac{1}{2}(d P)^{2} g^{\prime \prime}(p)+o(d t)\right]$
- $\Rightarrow g(p)=o(d t)+e^{-\rho d t} g(p)+e^{-\rho d t} \alpha p g^{\prime}(p) d t+e^{-\rho d t} \frac{1}{2} \sigma^{2} p^{2} g^{\prime \prime}(p) d t$
$>\Rightarrow g(p)=o(d t)+(1-\rho d t) g(p)+(1-\rho d t) \alpha p g^{\prime}(p) d t+(1-$ $\rho d t) \frac{1}{2} \sigma^{2} p^{2} g^{\prime \prime}(p) d t$
- $\Rightarrow-\rho g(p)+\alpha p g^{\prime}(p)+\frac{1}{2} \sigma^{2} p^{2} g^{\prime \prime}(p)=\frac{o(d t)}{d t}$
- $\Rightarrow g(p)=a_{1} p^{\beta_{1}}+a_{2} p^{\beta_{2}}$
- $\lim _{p \rightarrow 0} g(p)=0 \Rightarrow a_{2}=0$ and $g\left(P_{I}\right)=1 \Rightarrow a_{1}=\frac{1}{P^{\beta_{1}}}$

DYNAMIC PROGRAMMING: Many-Period Example

* Now, let the state variable x_{t} be continuous and the control variable u_{t} represent the possible choices made at time t
- Let the immediate profit flow be $\pi_{t}\left(x_{t}, u_{t}\right)$ and $\Phi_{t}\left(x_{t+1} \mid x_{t}, u_{t}\right)$ be the CDF of the state variable next period given current information
- Given the discount rate ρ and the Bellman Principle of Optimality, the expected NPV of the cash flows to go from period t is $F_{t}\left(x_{t}\right)=$ $\max _{u_{t}}\left\{\pi_{t}\left(x_{t}, u_{t}\right)+\frac{1}{(1+\rho)} \mathcal{E}_{t}\left[F_{t+1}\left(x_{t+1}\right)\right]\right\}$
- Use the termination value at time T and work backwards to solve for successive values of $u_{t}: F_{T-1}\left(x_{T-1}\right)=$ $\max _{u_{T-1}}\left\{\pi_{T-1}\left(x_{T-1}, u_{T-1}\right)+\frac{1}{(1+\rho)} \mathcal{E}_{T-1}\left[\Omega_{T}\left(x_{T}\right)\right]\right\}$
* With an infinite horizon, it is possible to solve the problem recursively due to independence from time and the downward scaling due to the discount factor: $F(x)=$ $\max _{u}\left\{\pi(x, u)+\frac{1}{(1+\rho)} \mathcal{E}\left[F\left(x^{\prime}\right) \mid x, u\right]\right\}$

DYNAMIC PROGRAMMING: Optimal Stopping

* Suppose that the choice is binary: either continue (to wait or to produce) or to terminate (waiting or production)
- Bellman equation is now $\max \left\{\Omega(x), \pi(x)+\frac{1}{(1+\rho)} \mathcal{E}\left[F\left(x^{\prime}\right) \mid x\right]\right\}$
- Focus on case where it is optimal to continue for $x>x^{*}$ and stop otherwise
- Continuation is more attractive for higher x if: (i) immediate profit from continuation becomes larger relative to the termination payoff, i.e., $\pi(x)+\frac{1}{(1+\rho)} \mathcal{E}\left[\Omega\left(x^{\prime}\right) \mid x\right]-\Omega(x)$ is increasing in x, and (ii) current advantage should not be likely to be reversed in the near future, i.e., require first-order stochastic dominance
- Both conditions are satisfied in the applications studied here: (i) always holds, and (ii) is true for random walks, Brownian motion, MR processes, and most other economic applications
- In general, may have stopping threshold that varies with time, $x^{*}(t)$

DYNAMIC PROGRAMMING:
 Continuous Time

\star In continuous time, the length of the time period, Δt, goes to zero and all cash flows are expressed in terms of rates

- Bellman equation is now $F(x, t)$ = $\max _{u}\left\{\pi(x, u, t) \Delta t+\frac{1}{(1+\rho \Delta t)} \mathcal{E}\left[F\left(x^{\prime}, t+\Delta t\right) \mid x, u\right]\right\}$
- Multiply by $(1+\rho \Delta t)$ and re-arrange: $\rho \Delta t F(x, t)=$ $\max _{u}\left\{\pi(x, u, t) \Delta t(1+\rho \Delta t)+\mathcal{E}\left[F\left(x^{\prime}, t+\Delta t\right)-F(x, t) \mid x, u\right]\right\}=$ $\max _{u}\{\pi(x, u, t) \Delta t(1+\rho \Delta t)+\mathcal{E}[\Delta F \mid x, u]\}$
- Divide by Δt and let it go to zero to obtain $\rho F(x, t)=$ $\max _{u}\left\{\pi(x, u, t)+\frac{\mathcal{E}[d F \mid x, u]}{d t}\right\}$
- Intuitively, the instantaneous rate of return on the asset must equal its expected net appreciation

DYNAMIC PROGRAMMING: Itô Processes

\star Suppose that $d x=a(x, u, t) d t+b(x, u, t) d z$ and $x^{\prime}=$ $x+d x$
Apply Itô's lemma to the value function, F :

- $\mathcal{E}[F(x+\Delta, t+\Delta t) \mid x, u]=F(x, t)+\left[F_{t}(x, t)+a(x, u, t) F_{x}(x, t)+\right.$ $\left.\frac{1}{2} b^{2}(x, u, t) F_{x x}(x, t)\right] \Delta t+o(\Delta t)$
- Return equilibrium condition is now $\rho F(x, t)=$ $\max _{u}\left\{\pi(x, u, t)+F_{t}(x, t)+a(x, u, t) F_{x}(x, t)+\frac{1}{2} b^{2}(x, u, t) F_{x x}(x, t)\right\}$
- Next, find optimal u as a function of $F_{t}(x, t), F_{x}(x, t), F_{x x}(x, t)$, x, t, and underlying parameters
- Subsitute it back into the return equilibrium condition to obtain a second-order PDE with F as the dependent variable and x and t as the independent ones
- Solution procedure is typically to start at the terminal time T and work backwards
* When time horizon is infinite, t drops out of the equation:
- $\rho F(x)=\max _{u}\left\{\pi(x, u)+a(x, u) F^{\prime}(x)+\frac{1}{2} b^{2}(x, u) F^{\prime \prime}(x)\right\}$

DYNAMIC PROGRAMMING: Optimal Stopping and Smooth Pasting

ћ Consider a binary decision problem: can either continue to obtain a profit flow (with continuation value) or stop to obtain a termination payoff where $d x=a(x, t) d t+$ $b(x, t) d z$

- In this case, a threshold policy with $x^{*}(t)$ exists, and the Bellman equation is $\rho F(x, t) d t=\max \{\Omega(x, t) d t, \pi(x, t) d t+\mathcal{E}[d F \mid x]\}$
- The RHS is larger in the continuation region, so applying Itô's lemma gives $\frac{1}{2} b^{2}(x, t) F_{x x}(x, t)+a(x, t) F_{x}(x, t)+F_{t}(x, t)-\rho F(x, t)+$ $\pi(x, t)=0$
- The PDE can be solved for $F(x, t)$ for $x>x^{*}(t)$ subject to the boundary condition $F\left(x^{*}(t), t\right)=\Omega\left(x^{*}(t), t\right) \forall t$ (value-matching condition)
- A second condition is necessary to find the free boundary: $F_{x}\left(x^{*}(t), t\right)=\Omega_{x}\left(x^{*}(t), t\right) \forall t$ (smooth-pasting condition)
- The latter may be thought of as a first-order necessary condition, i.e., if the two curves met at a kink, then the optimal stopping would occur elsewhere

DYNAMIC PROGRAMMING EXAMPLE: Optimal Abandonment

* You own a machine that produces profit, x, that evolves according to a BM process, i.e., $d x=a d t+b d z$, where $a<0$ to reflect decay of the machine over time

The lifetime of the machine is T years, discount rate is ρ, and we must find the optimal threshold profit level, $x^{*}(t)$, below which to abandon the machine (zero salvage value)

- Corresponding PDE is $\frac{1}{2} b^{2} F_{x x}(x, t)+a F_{x}(x, t)+F_{t}(x, t)-\rho F(x, t)+$ $x=0$
- PDE is solved numerically for $T=10, a=-0.1, b=0.2$, and $\rho=0.10$ using discrete time steps of $\Delta t=0.01$
- Solution in Figure 4.1 indicates that for lifetimes greater than ten years, the optimal abandonment threshold is about -0.17
- As lifetime is reduced, it becomes easier to abandon the machine

DYNAMIC PROGRAMMING EXAMPLE: Figure 4.1

(a)

DYNAMIC PROGRAMMING EXAMPLE: Optimal Abandonment

Assume an effectively infinite lifetime to obtain an ODE instead of a PDE: $\frac{1}{2} b^{2} F^{\prime \prime}(x)+a F^{\prime}(x)-\rho F(x)+x=0$

- Homogeneous solution is $y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$
- Substituting derivatives into the homogeneous portion of the ODE yields $c_{1} e^{r_{1} x}\left(\frac{1}{2} b^{2} r_{1}^{2}+a r_{1}-\rho\right)+c_{2} e^{r_{2} x}\left(\frac{1}{2} b^{2} r_{2}^{2}+a r_{2}-\rho\right)=0$
- The terms in the parentheses must be equal to zero, i.e., $r_{1}=$ $\frac{-a+\sqrt{a^{2}+2 b \rho}}{b^{2}}=5.584>0$ and $r_{2}=\frac{-a-\sqrt{a^{2}+2 b \rho}}{b^{2}}=-0.854<0$
- Particular solution: $Y(x)=A x+B, Y^{\prime}(x)=A$, and $Y^{\prime \prime}(x)=0$
- Substituting these into the original ODE yields $a A-\rho(A x+B)+$ $x=0 \Rightarrow A=\frac{1}{\rho}, B=\frac{a}{\rho^{2}}$
- Thus, $Y(x)=\frac{x}{\rho}+\frac{a}{\rho^{2}}$, and $F(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}+\frac{x}{\rho}+\frac{a}{\rho^{2}}$
- Boundary conditions: (i) $F\left(x^{*}\right)=0$, (ii) $F^{\prime}\left(x^{*}\right)=0$, (iii) $\lim _{x \rightarrow \infty} F(x)=Y(x)$
- The third one implies that $c_{1}=0$, i.e., $F(x)=c_{2} e^{r_{2} x}+\frac{x}{\rho}+\frac{a}{\rho^{2}}$
- First two conditions imply $x^{*}=-\frac{a}{\rho}+\frac{1}{r_{2}}=-0.17$ and $c_{2}=$ $-\frac{e^{-r_{2} x^{*}}}{r_{2} \rho}$

CONTINGENT CLAIMS: Replicating Portfolio

Dynamic programming uses an exogenous discount rate, ρ, which is assumed to the opportunity cost of capital

* Financial theory has a more sophisticated treatment of this topic in terms of relating this cost to the market portfolio
- Assume profit flow, x, follows a GBM and the output of the firm can be traded in financial markets
- Output held by investors if it provides a sufficiently high return: part of it from α and another from the convenience yield, $\delta=\mu-\alpha$
- The risk-adjusted rate of return is obtained from CAPM: $\mu=$ $r+\phi \sigma \rho_{x m}$, where ϕ is the market price of risk and $\rho_{x m}$ is the correlation between returns

CONTINGENT CLAIMS: Replicating Portfolio

Value of a firm, $F(x, t)$, with profit flow, $\pi(x, t)$, may be replicated by investing a dollar in the risk-free asset and holding n units of the output

- Portfolio costs $\$(1+n x)$, and if held for $d t$ time units, then it provides a safe return of $r d t$, a dividend of $n \delta x d t$, and a stochastic capital gain of $n d x=n \alpha x d t+n \sigma x d z$
- The total return per dollar invested is $\frac{r+n(\alpha+\delta) x}{1+n x} d t+\frac{\sigma n x}{1+n x} d z$
- Ownership of the firm over $d t \operatorname{costs} F(x, t)$ and offers a profit flow $\pi(x, t) d t$ along with a stochastic capital gain $d F=\left[F_{t}(x, t)+\right.$ $\left.\alpha x F_{x}(x, t)+\frac{1}{2} \sigma^{2} x^{2} F_{x x}(x, t)\right] d t+\sigma x F_{x}(x, t) d z$
- Thus, total return per dollar is $\frac{\pi(x, t)+F_{t}(x, t)+\alpha x F_{x}(x, t)+\frac{1}{2} \sigma^{2} x^{2} F_{x x}(x, t)}{F(x, t)} d t+\frac{\sigma x F_{x}(x, t)}{F(x, t)} d z$

CONTINGENT CLAIMS: Replicating Portfolio

Matching the risk terms gives $\frac{n x}{(1+n x)}=\frac{x F_{x}(x, t)}{F(x, t)} \Rightarrow n=$ $\frac{F_{x}(x, t)}{\left(F(x, t)-x F_{x}(x, t)\right)}$
\rightarrow Matching the return terms gives $\frac{\pi(x, t)+F_{t}(x, t)+\alpha x F_{x}(x, t)+\frac{1}{2} \sigma^{2} x^{2} F_{x x}(x, t)}{F(x, t)}=\frac{r+n(\alpha+\delta) x}{1+n x}$

- Substituting for n implies that the RHS becomes $r \frac{\left(F(x, t)-x F_{x}(x, t)\right)}{F(x, t)}+(\alpha+\delta) \frac{x F_{x}(x, t)}{F(x, t)}$
- Re-arranging the return equation then yields $\frac{1}{2} \sigma^{2} x^{2} F_{x x}(x, t)+(r-$ $\delta) x F_{x}(x, t)+F_{t}(x, t)-r F(x, t)+\pi(x, t)=0$
- Similar to the PDE obtained via dynamic programming
- Can also use a risk-free portfolio by holding one unit of $F(x, t)$ and n units short of the underlying asset x

CONTINGENT CLAIMS: Spanning Assets

\star If x is not directly traded, then we can use a spanning asset, i.e., one whose risk tracks the uncertainty in x

- Suppose replicating asset follows $d X=A(x, t) X d t+B(x, t) X d z$, i.e., have the same $d z$ even if the other coefficients are different
- If there is a dividend flow rate, $D(x, t)$, then one dollar invested in X over time $d t$ provides the return $[D(x, t)+A(x, t)] d t+B(x, t) d z$
- An investor will require return $\mu_{X}(x, t)=r+\phi \rho_{x m} B(x, t)$, which must equal $D(x, t)+A(x, t)$
Risk-free portfolio will cost $F-n X$ to buy and provide dividend flows of $[\pi-n D X] d t$
- Capital gain on the portfolio is $d F-n d X=\left[F_{t}+a F_{x}+\frac{1}{2} b^{2} F_{x x}-\right.$ $n A X] d t+\left[b F_{x}-n B X\right] d z$, so risk-free portfolio requires $n=\frac{b F_{x}}{B X}$
- Set expected net return on portfolio to the risk-free return on its cost: $r[F-n X] d t=\left[F_{t}+a F_{x}+\frac{1}{2} b^{2} F_{x x}-n A X\right] d t+\pi d t-n D X d t$
- Thus: $\frac{1}{2} b^{2} F_{x x}+a F_{x}+F_{t}-r F+r n X-n D X-n A X+\pi=0 \Rightarrow$ $\frac{1}{2} b^{2} F_{x x}+a F_{x}+F_{t} r F+\frac{r b F_{x}}{B}-\frac{D b F_{x}}{B}-\frac{A b F_{x}}{B}+\pi=0$
$\geq \frac{1}{2} b^{2} F_{r r}+a F_{r}+F_{+}-r F+\frac{r b F_{x}}{D}-\frac{\mu_{X} b F_{x}}{D}+\pi=0$

QUESTIONS

