¥Weeks 1Db2informal introduction

¥network = path ™ —m—"—_ m

1 ]

¥Week 3:graph theory

¥Weeks 4b7models of computing
¥ what can be computed (eliciently)?

¥ Weeks 8b11lower bounds
¥what cannot be computed (eliciently)?

¥Week 12:recap



Recap of weeks 1D?2

PColouring paths



Model of computingd:
Send, recelve, update

¥ All nodes in parallel:

¥ send messages to their neighbours
¥ recelve messages from neighbours
¥ update their state

¥ Stopping state = final output
¥ can send/receive, but not update any more



Examplée:
Colouring paths

¥ 2-colouring paths:

: F Assuming
¥ possible .m tlmep(n) some unique
¥ not possible In timeo(n) identifiers

¥ 3-colouring paths:

¥ ible in tim * _ Assuming
possbe t eO(Iog n) OsmallO unigug

¥ not possible In timeo(log* n) identifiers




Algorithm !
design technigues

¥ Symmetry breaking: use e.g. unigue identifiers
or randomness to break symmetry

OO O-0O0-O0-0O-0-0
e
(18—~~~



Algorithm !
design technigues

¥ Independence: non-adjacent nodes can
act simultaneously In parallel without conflicts



Algorithm !
design technigues

¥ Independence: non-adjacent nodes can
act simultaneously In parallel without conflicts

¥ Colouring ! independence: each colour
class Is an independent set



Algorithm !
design technigues

¥ Divide and conqguer: split in smaller
subproblems, solve recursively (in parallel)



Algorithm !
design technigues

¥ Composition and reductions:

¥ use OsubroutinesO

¥ prove that a solution to problenX
can be used to find a solution to problery

¥ example: colourings'# Independent sets



Algorithm !
design techniques

¥ Simulate sequential algorithms:
electleader, process nodes one by one

L nOnOnOnOn®n®n®
e
O -O-OC




Algorithm !
design technigues

¥ Fast colour reduction
% co=123=011111, (my colour)

4 @ c1 = 47 =0010Mm1, (successorOs colour)
i =2 (bits numbered 0, 1, 2, E from righit)

v b =0 (in my colour bit numberwas 0)

__} ¢=242+ 0= 4my new colour)



Proving lower bounds:
Locality

¥ State at time T only depends on
Initial Information within distance T




Proving lower bounds:
Locality

¥ Same T-neighbourhood, !
same output a"er T rounds

| @0+
OO HD-OO-®




Example:
Colouring paths

¥ 2-colouring paths:
¥ possible in timeQ(n)
¥ not possible In timeo(n)

¥ 3-colouring paths: J T
¥ possible in timeQ(log* n) — Uz Vishkin (1986)

¥ not pOSSibIe In timeO(IOg* n)ﬁ Nathan Linial (19921




bGraph-theoretic foundations



Graph G= V¥, B

V = set of nodeg(finite, non-empty)
E = set of edges(unordered pairs of nodes)

G=(v,B G
V=11, 2, 3, 4}
E=111,2},11,3},12,3}, 13,41}




Graph G= V¥, B

V = set of nodeg(finite, non-empty)
E = set of edges(unordered pairs of nodes)

G = (/, E) G: (1)

V=11,2,3, 4}
E={{L1.2}, {34}) 2




Graph G= V¥, B

V = set of nodeg(finite, non-empty)
E = set of edges(unordered pairs of nodes)

A= G (D
(1,2, 3,4} 3 @)
' (2)

G
V
E



Graph G= V¥, B

V = set of nodes(a.k.a. OverticesO)
E = set of edges

Usually nodes are denoted with, v
(if more nodes neededs, t, u, v, uOyOys, Vo, etc.),
edges are denoted witle, eQey, e, etc.

Convention.n=M, m=H



Graph G= V¥, B

u and v are Oadjacent nodesO
= nodesu and v are Oneighbours®

= there Is an edge {, v}

G={.B G ¢
oG
(2

V={, 2,3, 4}
E= { {1,2}{133}’ {213}1 {3’4} }




Graph G= V¥, B

e1 and e, are Oadjacent edgesD
= they share an endpoint
= thelr intersection Is non-empty

G = V, E) G:
V={1, 2, 3, 4}
E={{1,2}i1,3},{2,3}, {3,4} }

1




Graph G= V¥, B

Node v is OincidentO to edge!
=v IS an endpoint of e!
=v IS a member ofe

G=(V,B G
V={1,2, 3, 4}
E=111,2},{1,3},12,3}, 13,4} ]




Graph G= V¥, B

Node of Odegree@!
= node adjacent tok nodes!
= node Incident to k edges

G=(V, E)
V={1,2,3,4}
E=1{{1,2},{1,3},{2,3}, {3,4}}

deg(1)

’e



Graph G={V, EB)

Ck-regular graphO
= all nodes have degreek!
= all nodes havek neighbours

G = (/, E) G: (1)
v={1, 2, 3, 4}

E={{1223}{34}{14}} (2

©




Subgraph

Graph GO =YQEO) is a OsubgraphO 6f= (, E):!
VQc V and ECc E

G’:




Subgraph

Graph GO =YQEO) is a OsubgraphO 6f= (, E):!
VQc V and ECc E




Subgraph

Graph GO =YQEO) is a OsubgraphO 6f= (, E):!
VQc V and ECc E




Subgraph

Graph GO =YQEO) is a OsubgraphO 6f= (, E):!
vQc V and ECc E

o



Induced subgraph

Subgraph OinducedO by node¥®
= all nodes of VO and all edges that connect them

G




Induced subgraph

Subgraph OinducedO by edgeED
= all edges ofEO and all of their endpoints




Induced subgraph

This isnot a subgraph induced
by any set of nodes N why?

. .



Induced subgraph

This isnot a subgraph induced
by any set of edges N why?

o



Walks, paths, and!
connectivity

OWalkO = alternating sequence of incident
nodes and edges

W - (5, {531}) l) {1)4}) 4) {4)5}) 5) {5)6}) 6)
G

2

3

O—



Walks, paths, and!
connectivity

OPathO = walk visiting each node at most onde
OLengthO of a path = number oédges

W - (l, {134}) 4) {4)5}) 5) {5)6}) 6)
G

2 3

O—



Walks, paths, and!
connectivity

ODistanceO = length of ahortest path

w = (1, {1,5}, 5, {5,6}, 6)

G: ¢ 2 3
NI\ dsi =2
(4)—= 6




Walks, paths, and!
connectivity

ODistanceO = length of ahortest path!
(Infinite If no such path exists)

2
; @ dist(1, 6) =0

G




Walks, paths, and!
connectivity

OConnected component(C:!
there Is a path between any two nodes ofC

RO




Walks, paths, and!
connectivity

Graph is OconnectedO if only 1 connected
component




Walks, paths, and!
connectivity

Olsolated nodeO = node of degree 0




Walks, paths, and!
connectivity

ball(v, r) = Oradius+ neighbourhood of vO
= nodes at distance at mostr from node v

ball(4, 0) = {4)
ball(4, 1) = {4, 1, 5)
ball(4,2)=1{4, 1, 5, 2}
ball(4, 3) = V




Walks, paths, and!
connectivity

ball(v, r) = Oradius+ neighbourhood of vO
= nodes at distance at mostr from node v

ball(4, 0) = {4}
ball(4, 1) = {4, 1, 5}
ball(4, 2) = {4, 1, 5, 2}
ball(4, 3) 2V




Walks, paths, and!
connectivity

ball(v, r) = Oradius+ neighbourhood of vO
= nodes at distance at mostr from node v

ball(4, 0) = {4}
ball(4, 1) = {4, 1, 5}

ball(4, 2) = {4, 1, 5, 2}
ball(4, 3) =/

©




Walks, paths, and!
connectivity

ball(v, r) = Oradius+ neighbourhood of vO
= nodes at distance at mostr from node v

. ball(4,0) = {4}
G: 3 ~ ball(4,1) =1{4, 1, 5}
' - ball(4,2)=1{4,1,5,2}

i ball(4, 3) =V



Walks, paths, and!
connectivity

OCycleO = closed walk that visits each node
and each edge at most once(length $ 3)

SN




Walks, paths, and!
connectivity

OAcyclic graphO = graph without any cycles

G O—2@ &
@» ® ©




Walks, paths, and!
connectivity

OTreeO = connected acyclic gragh
OForestO = acyclic graph

c: O—2 ©®
® ©®




Isomorphism

OlsomorphismO fromG; = (1, E1) to G2 = /2, E2):!
bijection f. V1! V> that preserves adjacency




Isomorphism

OlsomorphismO fromG; = (1, E1) to G2 = /2, E2):!
bijection f. V1! V> that preserves adjacency




Isomorphism

Graphs are OisomorphicO if there exists
an Isomorphism form one to another




Isomorphism

Graphs are OisomorphicO if there exists
an Isomorphism form one to another

b (5] [K



Graph problems

Olndependent setO: non-adjacent nodes




Graph problems

OVertex coverQ: at least one endpoint of each
edge (all edges are OcoveredO with these nodes)




Graph problems

ODominating setO: all other nodes
have a neighbour In this set




Graph problems

OMatchingO: non-adjacent edges




Graph problems

OVertex colouringOt
adjacent nodes have di#erent colours




Graph problems

OVertex colouringOt
each colour class Is an independent set




Graph problems

OEdge colouringQ:
adjacent edges have di#erent colours




Graph problems

OEdge colouringQ:
each colour class Is a matching




Graph problems

¥ More definitions In the textbook:

¥ edge cover, edge dominating set

¥ domatic partition, edge domatic partition
¥ weak colouring

¥ factorisation E



Maximisation problems

¥ maximal = cannot add anything
¥ maximum = largest possible size

¥ x-approximation =
at least 1/x times maximum



Matching

Maximum matching

(2)

1

©

@

>/

Maximal matching
1 2 3

2-approximation




Matching
O—5—6
Maximum matching
—2)r—0)
(D——

Maximal matching



Minimisation problems

¥ minimal = cannot remove anything
¥minimum = smallest possible size

¥ x-approximation =
at most x times minimum



Vertex cover (VC) Minimum VC

2-approximation




Approximation

¥ Approximations are always feasible solutions!

¥ O2-approximation of minimum vertex coverO

¥ vertex cover
¥ 9% 2 times as large as minimum vertex cover



Graph theory and!
distributed algorithms

¥ Network $ graph: node & computer, edge & link

¥ Graph theory used to:

¥ define: model of computing, ,
what we want to solve, what we assume E

¥ prove: correctness of algorithms, ,
time complexity, impossibility results E



¥Weeks 1D2informal introduction
¥network = path ®—m—%— . -

¥Week 3:graph theory

¥Weeks 4b7models of computing
¥ what can be computed (eliciently)?

¥ Weeks 8b11lower bounds
¥what cannot be computed (eliciently)?

¥Week 12:recap



