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¥ network = path 

¥ Week 3: graph theory  

¥ Weeks 4Ð7: models of computing 

¥ what can be computed (e!iciently)? 

¥ Weeks 8Ð11: lower bounds 

¥ what cannot be computed (e!iciently)? 

¥ Week 12: recap
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Recap of weeks 1Ð2

ÐColouring paths



Model of computing:!
Send, receive, update
¥ All nodes in parallel: 

¥ send messages to their neighbours 

¥ receive messages from neighbours 

¥ update their state 

¥ Stopping state = final output 

¥ can send/receive, but not update any more



Example:!
Colouring paths
¥ 2-colouring paths: 

¥ possible in time O(n) 

¥ not possible in time o(n) 

¥ 3-colouring  paths: 

¥ possible in time O(log* n) 

¥ not possible in time o(log* n)

Assuming 
ÒsmallÓ unique 

identifiers

Assuming 
some unique 

identifiers



Algorithm !
design techniques
¥ Symmetry breaking:  use e.g. unique identifiers 

or randomness to break symmetry
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Algorithm !
design techniques
¥ Independence: non-adjacent nodes can 

act simultaneously in parallel without conflicts
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Algorithm !
design techniques
¥ Independence: non-adjacent nodes can 

act simultaneously in parallel without conflicts 

¥ Colouring ! independence:  each colour 
class is an independent set 

3 112 2 2 23



Algorithm !
design techniques
¥ Divide and conquer: split in smaller 

subproblems, solve recursively (in parallel)
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Algorithm !
design techniques
¥ Composition and reductions: 

¥ use ÒsubroutinesÓ 

¥ prove that a solution to problem X 
can be used to find a solution to problem Y 

¥ example: colourings  "#   independent sets



Algorithm !
design techniques
¥ Simulate sequential algorithms:  

elect leader, process nodes one by one

L

3 …21 4



Algorithm !
design techniques
¥ Fast colour reduction

 c0  =  123  = 011110112  (my colour)!
 c1  =  47  = 001011112  (successorÕs colour)!
 i  = 2  (bits numbered 0, 1, 2, É from right)!
 b  = 0  (in my colour bit number i was 0)!
 c  = 2á2 + 0 = 4  (my new colour)

47

1234



Proving lower bounds: 
Locality
¥ State at time T only depends on!

initial information within distance T

T = 2

T = 1

T = 0



Proving lower bounds: 
Locality
¥ Same T-neighbourhood, !

same output a"er T rounds

3 421 7 5 6

3 521 4 6G:

H:



Example: 
Colouring paths
¥ 2-colouring paths: 

¥ possible in time O(n) 

¥ not possible in time o(n) 

¥ 3-colouring  paths: 

¥ possible in time O(log* n) 

¥ not possible in time o(log* n)

Richard Cole and 
Uzi Vishkin (1986)

Nathan Linial (1992)



Week 3

ÐGraph-theoretic foundations



Graph G = (V, E)
V = set of nodes (finite, non-empty) 
E = set of edges (unordered pairs of nodes)
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G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:
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Graph G = (V, E)
V = set of nodes (finite, non-empty) 
E = set of edges (unordered pairs of nodes)
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G = (V, E)
V = {1, 2, 3, 4}
E = !

G:



Graph G = (V, E)
V = set of nodes (a.k.a. ÒverticesÓ) 
E = set of edges 

Usually nodes are denoted with u, v 
(if more nodes needed: s, t, u, v, uÕ, vÕ, v1, v2, etc.), 
edges are denoted with e, eÕ, e1, e2, etc. 

Convention:  n = |V|,  m = |E|



Graph G = (V, E)
u and v are Òadjacent nodesÓ!
= nodes u and v are ÒneighboursÓ!
= there is an edge {u, v}
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G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }
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Graph G = (V, E)
e1 and e2 are Òadjacent edgesÓ!
= they share an endpoint!
= their intersection is non-empty
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G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:



Graph G = (V, E)
Node v is ÒincidentÓ to edge e!
= v is an endpoint of e!
= v is a member of e
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G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }
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Graph G = (V, E)
Node of ÒdegreeÓ k!
= node adjacent to k nodes!
= node incident to k edges
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G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:
deg(1) = 2



Graph G = (V, E)
Òk-regular graphÓ!
= all nodes have degree k!
= all nodes have k neighbours

32

1 4G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {2,3}, {3,4}, {1,4} }

G:



Subgraph
Graph GÕ = (VÕ, EÕ) is a ÒsubgraphÓ of G = (V, E):!
VÕ ⊆ V and EÕ ⊆ E
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Subgraph
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Subgraph
Graph GÕ = (VÕ, EÕ) is a ÒsubgraphÓ of G = (V, E):!
VÕ ⊆ V and EÕ ⊆ E

2

1

4

G’:
3

2

1

4

G:



Subgraph
Graph GÕ = (VÕ, EÕ) is a ÒsubgraphÓ of G = (V, E):!
VÕ ⊆ V and EÕ ⊆ E
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Induced subgraph
Subgraph ÒinducedÓ by nodes VÕ!
= all nodes of VÕ and all edges that connect them
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Induced subgraph
Subgraph ÒinducedÓ by edges EÕ!
= all edges of EÕ and all of their endpoints

3

2

1

4

G:



Induced subgraph
This is not a subgraph induced!
by any set of nodes Ñ why?
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Induced subgraph
This is not a subgraph induced!
by any set of edges Ñ why?
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Walks, paths, and!
connectivity
ÒWalkÓ = alternating sequence of incident!
nodes and edges
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G: 2 3

w = (5, {5,1}, 1, {1,4}, 4, {4,5}, 5, {5,6}, 6)



Walks, paths, and!
connectivity
ÒPathÓ = walk visiting each node at most once!
ÒLengthÓ of a path = number of edges
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G: 2 3

w = (1, {1,4}, 4, {4,5}, 5, {5,6}, 6)



Walks, paths, and!
connectivity
ÒDistanceÓ = length of a shortest path
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G: 2 3

w = (1, {1,5}, 5, {5,6}, 6)

dist(1, 6) = 2



Walks, paths, and!
connectivity
ÒDistanceÓ = length of a shortest path!
(infinite if no such path exists)

54

1

6

G: 2 3

dist(1, 6) = ∞



Walks, paths, and!
connectivity
ÒConnected componentÓ C:!
there is a path between any two nodes of C
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G: 2 3



Walks, paths, and!
connectivity
Graph is ÒconnectedÓ if only 1 connected 
component
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Walks, paths, and!
connectivity
ÒIsolated nodeÓ = node of degree 0
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Walks, paths, and!
connectivity
ball(v, r) = Òradius-r neighbourhood of vÓ!
= nodes at distance at most r from node v
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G: 2 3
ball(4, 0) = {4}
ball(4, 1) = {4, 1, 5}
ball(4, 2) = {4, 1, 5, 2}
ball(4, 3) = V



Walks, paths, and!
connectivity
ball(v, r) = Òradius-r neighbourhood of vÓ!
= nodes at distance at most r from node v
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ball(4, 3) = V



Walks, paths, and!
connectivity
ball(v, r) = Òradius-r neighbourhood of vÓ!
= nodes at distance at most r from node v
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Walks, paths, and!
connectivity
ball(v, r) = Òradius-r neighbourhood of vÓ!
= nodes at distance at most r from node v
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ball(4, 0) = {4}
ball(4, 1) = {4, 1, 5}
ball(4, 2) = {4, 1, 5, 2}
ball(4, 3) = V



Walks, paths, and!
connectivity
ÒCycleÓ = closed walk that visits each node!
and each edge at most once (length $ 3)
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Walks, paths, and!
connectivity
ÒAcyclic graphÓ = graph without any cycles
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Walks, paths, and!
connectivity
ÒTreeÓ = connected acyclic graph!
ÒForestÓ = acyclic graph
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Isomorphism
ÒIsomorphismÓ from G1 = (V1, E1) to G2 = (V2, E2):!
bijection f: V1 ! V2 that preserves adjacency
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Isomorphism
ÒIsomorphismÓ from G1 = (V1, E1) to G2 = (V2, E2):!
bijection f: V1 ! V2 that preserves adjacency
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Isomorphism
Graphs are ÒisomorphicÓ if there exists!
an isomorphism form one to another
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Isomorphism
Graphs are ÒisomorphicÓ if there exists!
an isomorphism form one to another



Graph problems
ÒIndependent setÓ: non-adjacent nodes
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Graph problems
ÒVertex coverÓ: at least one endpoint of each 
edge (all edges are ÒcoveredÓ with these nodes)
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Graph problems
ÒDominating setÓ: all other nodes!
have a neighbour in this set
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Graph problems
ÒMatchingÓ: non-adjacent edges
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Graph problems
ÒVertex colouringÓ:!
adjacent nodes have di#erent colours
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Graph problems
ÒVertex colouringÓ:!
each colour class is an independent set
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Graph problems
ÒEdge colouringÓ:!
adjacent edges have di#erent colours

54

1

6

2 3



Graph problems
ÒEdge colouringÓ:!
each colour class is a matching
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Graph problems
¥ More definitions in the textbook: 

¥ edge cover, edge dominating set 

¥ domatic partition, edge domatic partition 

¥ weak colouring 

¥ factorisation É



Maximisation problems
¥ maximal  = cannot add anything 

¥ maximum = largest possible size 

¥ x-approximation  =!
at least 1/x times maximum
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Matching Maximal matching

Maximum matching 2-approximation
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Minimisation problems
¥ minimal  = cannot remove anything 

¥ minimum  = smallest possible size 

¥ x-approximation  =!
at most x times minimum
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Minimal VC 2-approximation



Approximation
¥ Approximations are always feasible solutions! 

¥ Ò2-approximation of minimum vertex coverÓ 

¥ vertex cover 

¥ % 2 times as large as minimum vertex cover



Graph theory and !
distributed algorithms
¥ Network $ graph: node & computer, edge & link 

¥ Graph theory used to: 

¥ define: model of computing, 
what we want to solve, what we assume É 

¥ prove: correctness of algorithms, 
time complexity, impossibility results É



¥ Weeks 1Ð2: informal introduction  

¥ network = path 

¥ Week 3: graph theory  

¥ Weeks 4Ð7: models of computing 

¥ what can be computed (e!iciently)? 

¥ Weeks 8Ð11: lower bounds 

¥ what cannot be computed (e!iciently)? 

¥ Week 12: recap

! !!!
!


