
¥ Weeks 1Ð2: informal introduction

¥ network = path

¥ Week 3: graph theory

¥ Weeks 4Ð7: models of computing

¥ what can be computed (e!iciently)?

¥ Weeks 8Ð11: lower bounds

¥ what cannot be computed (e!iciently)?

¥ Week 12: recap

! !!! !

Recap of weeks 1Ð2

ÐColouring paths

Model of computing:!
Send, receive, update
¥ All nodes in parallel:

¥ send messages to their neighbours

¥ receive messages from neighbours

¥ update their state

¥ Stopping state = final output

¥ can send/receive, but not update any more

Example:!
Colouring paths
¥ 2-colouring paths:

¥ possible in time O(n)

¥ not possible in time o(n)

¥ 3-colouring paths:

¥ possible in time O(log* n)

¥ not possible in time o(log* n)

Assuming 
ÒsmallÓ unique

identifiers

Assuming 
some unique

identifiers

Algorithm !
design techniques
¥ Symmetry breaking: use e.g. unique identifiers 

or randomness to break symmetry

15 27188 20 11 29

Algorithm !
design techniques
¥ Independence: non-adjacent nodes can 

act simultaneously in parallel without conflicts

15 27188 20 11 29

15 118 20 11 29

Algorithm !
design techniques
¥ Independence: non-adjacent nodes can 

act simultaneously in parallel without conflicts

¥ Colouring ! independence: each colour 
class is an independent set 

3 112 2 2 23

Algorithm !
design techniques
¥ Divide and conquer: split in smaller

subproblems, solve recursively (in parallel)

15 27188 20 11 29

15 27188 20 11 29

Algorithm !
design techniques
¥ Composition and reductions:

¥ use ÒsubroutinesÓ

¥ prove that a solution to problem X 
can be used to find a solution to problem Y

¥ example: colourings "# independent sets

Algorithm !
design techniques
¥ Simulate sequential algorithms:  

elect leader, process nodes one by one

L

3 …21 4

Algorithm !
design techniques
¥ Fast colour reduction

 c0 = 123 = 011110112 (my colour)!
 c1 = 47 = 001011112 (successorÕs colour)!
 i = 2 (bits numbered 0, 1, 2, É from right)!
 b = 0 (in my colour bit number i was 0)!
 c = 2á2 + 0 = 4 (my new colour)

47

1234

Proving lower bounds:
Locality
¥ State at time T only depends on!

initial information within distance T

T = 2

T = 1

T = 0

Proving lower bounds:
Locality
¥ Same T-neighbourhood, !

same output a"er T rounds

3 421 7 5 6

3 521 4 6G:

H:

Example: 
Colouring paths
¥ 2-colouring paths:

¥ possible in time O(n)

¥ not possible in time o(n)

¥ 3-colouring paths:

¥ possible in time O(log* n)

¥ not possible in time o(log* n)

Richard Cole and 
Uzi Vishkin (1986)

Nathan Linial (1992)

Week 3

ÐGraph-theoretic foundations

Graph G = (V, E)
V = set of nodes (finite, non-empty) 
E = set of edges (unordered pairs of nodes)

3
2

1
4

G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:

Graph G = (V, E)
V = set of nodes (finite, non-empty) 
E = set of edges (unordered pairs of nodes)

3

2

1

4

G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {3,4} }

G:

Graph G = (V, E)
V = set of nodes (finite, non-empty) 
E = set of edges (unordered pairs of nodes)

3

2

1

4

G = (V, E)
V = {1, 2, 3, 4}
E = !

G:

Graph G = (V, E)
V = set of nodes (a.k.a. ÒverticesÓ) 
E = set of edges

Usually nodes are denoted with u, v 
(if more nodes needed: s, t, u, v, uÕ, vÕ, v1, v2, etc.), 
edges are denoted with e, eÕ, e1, e2, etc.

Convention: n = |V|, m = |E|

Graph G = (V, E)
u and v are Òadjacent nodesÓ!
= nodes u and v are ÒneighboursÓ!
= there is an edge {u, v}

3
2

1
4

G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:

Graph G = (V, E)
e1 and e2 are Òadjacent edgesÓ!
= they share an endpoint!
= their intersection is non-empty

3
2

1
4

G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:

Graph G = (V, E)
Node v is ÒincidentÓ to edge e!
= v is an endpoint of e!
= v is a member of e

3

2

1
4

G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:

Graph G = (V, E)
Node of ÒdegreeÓ k!
= node adjacent to k nodes!
= node incident to k edges

3
2

1
4

G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:
deg(1) = 2

Graph G = (V, E)
Òk-regular graphÓ!
= all nodes have degree k!
= all nodes have k neighbours

32

1 4G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {2,3}, {3,4}, {1,4} }

G:

Subgraph
Graph GÕ = (VÕ, EÕ) is a ÒsubgraphÓ of G = (V, E):!
VÕ ⊆ V and EÕ ⊆ E

3
2

1G’:
3

2

1
4

G:

Subgraph
Graph GÕ = (VÕ, EÕ) is a ÒsubgraphÓ of G = (V, E):!
VÕ ⊆ V and EÕ ⊆ E

3
2

1
4

G’:
3

2

1
4

G:

Subgraph
Graph GÕ = (VÕ, EÕ) is a ÒsubgraphÓ of G = (V, E):!
VÕ ⊆ V and EÕ ⊆ E

2

1

4

G’:
3

2

1

4

G:

Subgraph
Graph GÕ = (VÕ, EÕ) is a ÒsubgraphÓ of G = (V, E):!
VÕ ⊆ V and EÕ ⊆ E

3
2

1

4

G:

Induced subgraph
Subgraph ÒinducedÓ by nodes VÕ!
= all nodes of VÕ and all edges that connect them

3
2

1

4

G:

Induced subgraph
Subgraph ÒinducedÓ by edges EÕ!
= all edges of EÕ and all of their endpoints

3

2

1

4

G:

Induced subgraph
This is not a subgraph induced!
by any set of nodes Ñ why?

3

2

1

4

G:

Induced subgraph
This is not a subgraph induced!
by any set of edges Ñ why?

3
2

1

4

G:

Walks, paths, and!
connectivity
ÒWalkÓ = alternating sequence of incident!
nodes and edges

54

1

6

G: 2 3

w = (5, {5,1}, 1, {1,4}, 4, {4,5}, 5, {5,6}, 6)

Walks, paths, and!
connectivity
ÒPathÓ = walk visiting each node at most once!
ÒLengthÓ of a path = number of edges

54

1

6

G: 2 3

w = (1, {1,4}, 4, {4,5}, 5, {5,6}, 6)

Walks, paths, and!
connectivity
ÒDistanceÓ = length of a shortest path

54

1

6

G: 2 3

w = (1, {1,5}, 5, {5,6}, 6)

dist(1, 6) = 2

Walks, paths, and!
connectivity
ÒDistanceÓ = length of a shortest path!
(infinite if no such path exists)

54

1

6

G: 2 3

dist(1, 6) = ∞

Walks, paths, and!
connectivity
ÒConnected componentÓ C:!
there is a path between any two nodes of C

54

1

6

G: 2 3

Walks, paths, and!
connectivity
Graph is ÒconnectedÓ if only 1 connected
component

54

1

6

G: 2 3

Walks, paths, and!
connectivity
ÒIsolated nodeÓ = node of degree 0

54

1

6

G: 2 3

Walks, paths, and!
connectivity
ball(v, r) = Òradius-r neighbourhood of vÓ!
= nodes at distance at most r from node v

54

1

6

G: 2 3
ball(4, 0) = {4}
ball(4, 1) = {4, 1, 5}
ball(4, 2) = {4, 1, 5, 2}
ball(4, 3) = V

Walks, paths, and!
connectivity
ball(v, r) = Òradius-r neighbourhood of vÓ!
= nodes at distance at most r from node v

54

1

6

G: 2 3
ball(4, 0) = {4}
ball(4, 1) = {4, 1, 5}
ball(4, 2) = {4, 1, 5, 2}
ball(4, 3) = V

Walks, paths, and!
connectivity
ball(v, r) = Òradius-r neighbourhood of vÓ!
= nodes at distance at most r from node v

54

1

6

G: 2 3
ball(4, 0) = {4}
ball(4, 1) = {4, 1, 5}
ball(4, 2) = {4, 1, 5, 2}
ball(4, 3) = V

Walks, paths, and!
connectivity
ball(v, r) = Òradius-r neighbourhood of vÓ!
= nodes at distance at most r from node v

54

1

6

G: 2 3
ball(4, 0) = {4}
ball(4, 1) = {4, 1, 5}
ball(4, 2) = {4, 1, 5, 2}
ball(4, 3) = V

Walks, paths, and!
connectivity
ÒCycleÓ = closed walk that visits each node!
and each edge at most once (length $ 3)

54

1

6

G: 2 3

Walks, paths, and!
connectivity
ÒAcyclic graphÓ = graph without any cycles

54

1

6

G: 2 3

Walks, paths, and!
connectivity
ÒTreeÓ = connected acyclic graph!
ÒForestÓ = acyclic graph

54

1

6

G: 2 3

Isomorphism
ÒIsomorphismÓ from G1 = (V1, E1) to G2 = (V2, E2):!
bijection f: V1 ! V2 that preserves adjacency

54

1

6

2 3
d

fc ba

e

G1: G2:

Isomorphism
ÒIsomorphismÓ from G1 = (V1, E1) to G2 = (V2, E2):!
bijection f: V1 ! V2 that preserves adjacency

54

1

6

2 3
d

fc ba

e

G1: G2:

Isomorphism
Graphs are ÒisomorphicÓ if there exists!
an isomorphism form one to another

54

1

6

2 3
d

fc ba

e

G1: G2:

Isomorphism
Graphs are ÒisomorphicÓ if there exists!
an isomorphism form one to another

Graph problems
ÒIndependent setÓ: non-adjacent nodes

54

1

6

2 3

Graph problems
ÒVertex coverÓ: at least one endpoint of each
edge (all edges are ÒcoveredÓ with these nodes)

54

1

6

2 3

Graph problems
ÒDominating setÓ: all other nodes!
have a neighbour in this set

54

1

6

2 3

Graph problems
ÒMatchingÓ: non-adjacent edges

54

1

6

2 3

Graph problems
ÒVertex colouringÓ:!
adjacent nodes have di#erent colours

54

1

6

2 3

Graph problems
ÒVertex colouringÓ:!
each colour class is an independent set

54

1

6

2 3

Graph problems
ÒEdge colouringÓ:!
adjacent edges have di#erent colours

54

1

6

2 3

Graph problems
ÒEdge colouringÓ:!
each colour class is a matching

54

1

6

2 3

Graph problems
¥ More definitions in the textbook:

¥ edge cover, edge dominating set

¥ domatic partition, edge domatic partition

¥ weak colouring

¥ factorisation É

Maximisation problems
¥ maximal = cannot add anything

¥ maximum = largest possible size

¥ x-approximation =!
at least 1/x times maximum

54

1

6

2 3

54

1

6

2 3

54

1

6

2 3

54

1

6

2 3

Matching Maximal matching

Maximum matching 2-approximation

54

1

6

2 3

54

1

6

2 3

54

1

6

2 3

54

1

6

2 3

Matching Maximal matching

Maximum matching 2-approximation

Minimisation problems
¥ minimal = cannot remove anything

¥ minimum = smallest possible size

¥ x-approximation =!
at most x times minimum

54

1

6

2 3

54

1

6

2 3

54

1

6

2 3

54

1

6

2 3

Vertex cover (VC) Minimum VC

Minimal VC 2-approximation

Approximation
¥ Approximations are always feasible solutions!

¥ Ò2-approximation of minimum vertex coverÓ

¥ vertex cover

¥ % 2 times as large as minimum vertex cover

Graph theory and !
distributed algorithms
¥ Network $ graph: node & computer, edge & link

¥ Graph theory used to:

¥ define: model of computing, 
what we want to solve, what we assume É

¥ prove: correctness of algorithms, 
time complexity, impossibility results É

¥ Weeks 1Ð2: informal introduction

¥ network = path

¥ Week 3: graph theory

¥ Weeks 4Ð7: models of computing

¥ what can be computed (e!iciently)?

¥ Weeks 8Ð11: lower bounds

¥ what cannot be computed (e!iciently)?

¥ Week 12: recap

! !!!
!

