
CS-E4110 Concurrent Programming
Autumn 2016 - Tutorials

Semaphores and Monitors

2016-10-03

1



Task 1

Define the differences between weak general semaphores, strong general semaphores
and binary semaphores.

Which of these three semaphore variants does the following Java implementation
represent:

1 public class Semaphore {
2 private int value;
3

4 public Semaphore(int v) {
5 this.value = v;
6 }
7

8 public synchronized void release() {
9 this.value++;

10 this.notify();
11 }
12

13 public synchronized void acquire() throws InterruptedException {
14 while(this.value <= 0) {
15 wait();
16 }
17 this.value−−;
18 }
19 }

Task 2

Write a blocking stack implementation in Java using semaphores from java.util.concurrent
instead of the Java concurrency primitives wait(), notify() or notifyAll().
You may choose to ignore interrupt handling.

The blocking stack is defined by the interface:

1 public interface BlockingStack<T> {
2

3 /∗∗
4 ∗ Add a new object to the top of the stack. If there is no free space, the
5 ∗ call will block until space becomes available.
6 ∗ @param object
7 ∗ @throws InterruptedException
8 ∗/
9 void push(T object) throws InterruptedException;

10

11 /∗∗
12 ∗ Remove the topmost object from the stack. If the stack is empty, the
13 ∗ call will block until objects are pushed onto the stack.
14 ∗ @return

2



15 ∗ @throws InterruptedException
16 ∗/
17 T pop() throws InterruptedException;
18

19 /∗∗
20 ∗ Return the number of items in the stack: 0 <= size <= capacity
21 ∗ @return
22 ∗/
23 int size();
24

25 }

Task 3

Write a Java implementation of Algorithm 7.4 listed below in Task 4 using the Java
concurrency primitives wait(), notify() or notifyAll().

Does your implementation work exactly like the reference algorithm? Consider
how the classic general monitors (as in Algorithm 7.4) differ from Java monitors.

Task 4 (Ben-Ari, 7.4)

3



Modify the solution in Algorithm 7.4 to the problem of the readers and writers
so as to implement each of the following rules (as a separate change to the original
algorithm):

1. If there are reading processes, a new reader may commence reading even if there
are waiting writers.

2. If there are waiting writers, they receive precedence over all waiting readers.

3. If there are waiting readers, no more than two writers will write before a pro-
cess is allowed to read. In other words, ensure that, if a reader is blocked in
StartRead, no more than two calls to StartWrite may complete (and will,
if there are sufficient calls to StartWrite).

4


