Gas humidity

ELEC-5710 Sensors and Measurement Methods
2017

What is humidity?
Water vapor in gas or in other substances
• In gas: Humidity
• In other substances: Water content

Described with different quantities:
• Absolute humidity
• Mass mixing ratio
• Specific humidity
• Relative humidity

Absolute humidity (AH) and Relative humidity (RH)
• The mass of water vapor in a certain volume of gas:

\[AH = \frac{m_v}{V} \]

• Known also as volumetric humidity
• Absolute humidity changes as a function of temperature and pressure
 – The quantity does not fit well to situations where temperature changes a lot
 – Sometimes (incorrectly) absolute humidity refers to mass ratios
• Relative humidity, expressed as a percent, measures
 the current absolute humidity relative to the maximum
 (highest point) for that temperature.
Mass ratios

- **Specific humidity** is the mass of water vapour in relation to the total mass
 \[SH = \frac{m_v}{m_t} \]
 \[m_v + m_g = m_t \]
- **Mass mixing ratio** is the mass of water vapour in relation to the mass of dry gas
 \[MR = r = \frac{m_v}{m_g} \]
- Temperature does not affect mass ratios (unless condensation happens)

Dalton’s law of partial pressures

\[P_{\text{av}} = P_N + P_O + P_{H_2O} + P_{CO_2} + \ldots \]

Saturated water vapour

- Pressure is at the highest
- Equilibrium with planar water or icy surface
- Temperature drops \(\rightarrow \) condensation
- Pressure rises \(\rightarrow \) condensation
- Dew point: \(t_d \)
Pressure of saturated water vapour in air

Relative humidity (RH)

- Vapour pressure ratio to saturated vapour pressure at the same temperature
 \[RH = \phi = \frac{P_{(H_2O)}}{P_{(H_2O)\text{sat}}} \times 100\% = \frac{MR}{MR_\text{sat}} \times 100\% = \frac{SH}{SH_\text{sat}} \times 100\% \]

- Reveals how close the dew point is
- Important at weather forecasts
- Affects human's comfort
 - Thermal regulation of a body, high dew point less comfortable
The effect of temperature to relative humidity

![Graph showing the effect of temperature on relative humidity]

Hygrometer

- Most accurate result by measuring dew point
 - Detecting the phase change of water
- The effect of water vapour to electrical, mechanical and optic properties of a material
Detecting the phase change of water: Optical dew point sensor

- A mirror is cooled to the dew point
- The deposit of moisture on the mirror surface is kept constant by controlling the Peltier element
- The deposit of moisture is measured optically and the signal then controls the Peltier element

The uncertainty of the device is 0.1-0.3 °C

Introduction to sensors 13

Detecting the phase change of water: Optical dew point sensor

+ Accurate
+ Wide range (-80 °C … +100 °C)
+ Stable
- Expensive
- The mirror needs regular cleaning
- Slow
Detecting the phase change of water:

Psychrometer

- Two temperature sensors: dry and wet
- Water evaporates from the wet side and drops its temperature
- Wet side cools to "wet bulb temperature"

Temperature range > 0 °C
- Uncertainty even 2 %RH
- Long-term stability
- Wide humidity range (1-100 %RH)
- Withstands exposure to water
 - Air flow
 - Maintenance (adding distilled water, changing sock)

Detecting the phase change of water:

Other dew point sensors

Instead of optical detection:
- Quartz crystal microbalance, QCM (change of frequency)
 - Especially below 0 °C
 - Relatively new method, not widely in use
- Thermic (change of heat flux)
 - Especially high humidities and temperatures
 - Not produced anymore?
- Impedance
 - Normal humidity zone
 - Fast
Detecting the phase change of water: Surface acoustic wave dew point sensor (SAW)

- Surface acoustic wave damps when ice or water is formed on a surface of a sensor
- Vaisala has been the only manufacturer; not produced anymore

Capasitive polymer sensors

- The most common RH sensor type
- Measurement range even 0-100 %RH
- Uncertainty at best 2 %RH
- Wide temperature range: -40 ... +80 °C

- Easy to use, small scale
- Withstands exposure to water (after that requires a calibration)
- Fast, sensitive, wide temperature range

- Relatively poor stability
- Hysteresis
- Temperature dependency (temperature sensor in the same device)
- Individuality (necessity to calibrate)
Other sensor types

- **Resistive sensors**
 - Conducting polymers
 - Usually less sensitive and accurate than capacitive

- **Mechanical**
 - Thermohygrographs, hair tension hygrometers
 - No longer in use

Other sensor types

- **Optical**
 - Spectroscopic:
 - air absorption
 - Fiber optical:
 - moisture detector

- **Mechanical properties**
 - Quartz crystal microbalance (QCM)