DNN-HMM acoustic models for speech recognition

Robert von Zweygbergk
Rasmus Törnqvist
Table of contents

- HMM-GMM networks
 - What is GMM?
- HMM-DNN networks
 - What are DNNs?
 - How are they trained
 - Pretraining & RBMs
 - Deep Belief Networks & Interfacing
- Results
- References
HMM-GMM networks

• Hidden Markov Models and Gaussian Mixture Models are the most commonly used models in speech recognition

• HMMs used to account for variability in speech

• GMMs used to determine how well each state of the HMM corresponds to the coefficients representing the acoustic input
GMM networks

\[p(y_i) = \Phi^v(y_i) = \sum_{k=1}^{K^v} \alpha_k^v N(y_i; \mu_k^v, \Sigma_k^v) \]

\[\mu_k^v = \begin{bmatrix} \mu_k^{v,x} \\ \mu_k^{v,f} \end{bmatrix} \quad \text{and} \quad \Sigma_k^v = \begin{bmatrix} \Sigma_k^{v,xx} & \Sigma_k^{v,xf} \\ \Sigma_k^{v,fx} & \Sigma_k^{v,ff} \end{bmatrix} \]

\[\hat{f}_i = \sum_{k=1}^{K^v} h_k(x_i) \left(\mu_k^{v,f} + \Sigma_k^{v,fx} \left(\Sigma_k^{v,xx} \right)^{-1} (x_i - \mu_k^{v,x}) \right) \]

(1) Gaussian mixture model

(2) Mean vector \(\mu \) comprised of the mean vectors of the voiced MFCC vectors and mean of the fundamental frequency in the cluster \(k \)

(3) Predicted fundamental frequency. \(h(x) \) is the posterior probability of the MFCC coming from that cluster
GMM networks

- GMM requires uncorrelated inputs (e.g. MFCC)
- GMMs inefficient for modeling speech data (Homework: Why?)
HMM-DNN networks

- Instead of using GMMs, use DNNs to produce posterior probabilities over HMM states as output
- Feed-forward networks used
- Several frames of coefficients as inputs
- DNNs with many hidden layers have been shown to outperform GMMs on a variety of speech recognition benchmarks
- Can be trained as DBN --- Correlated inputs OK
Deep Neural Network

- Used to detect patterns in data
- Deep network -> many hidden layers
- More layers -> more complex data
Deep Neural Network

• Each hidden unit, j, maps its total input from the layer below, x_j, to the scalar state, y_j, that it sends to the layer above

$$y_j = \text{logistic}(x_j) = \frac{1}{1 + e^{-x_j}}, \quad x_j = b_j + \sum_i y_i w_{ij}$$

• b_j is the bias of unit j, i is an index over units in the layer below, and w_{ij} is the weight for the connection to j from i in the layer below
Deep Neural Network

- For multiclass classification, the "softmax" linearity is used to get a class probability p_j

$$ p_j = \frac{\exp(x_j)}{\sum_{k} \exp(x_k)} $$
DNN training

• Discriminative training (DT)
 • By backpropagating derivatives of a cost function that measures the discrepancy between target outputs and actual outputs produced for each training case
 • When using softmax, the natural cost function C is

$$C = - \sum_j d_j \log p_j$$

• For large training sets, a random "minibatch", t, of training sets is often used
DNN training

• Large weights can be penalized to reduce overfitting
 • Early stopping is also used

• In DNNs with full connectivity between adjacent layers, the initial weights are given small random values, to prevent all the hidden units from one layer getting the same gradient

• DNN with many layers hard to optimize
 • The backpropagated gradients will have very different magnitudes in different layers, if the initial weights aren't chosen carefully

• DNNs may generalize poorly to held out test data
Generative pretraining

• Start by training feature detector to be good at modeling the structure of the input data, instead of training it to discriminate between classes

• Learn one layer of feature detectors at a time
 • States of the feature detectors in one layer are the data for training the next layer

• After pretraining, use the multiple layers of feature detectors as a starting point for discriminative fine tuning
 • Slightly adjust the weights of the DNN by backpropagation
Generative pretraining

• A single layer can be learned by fitting a generative model with one layer of latent variables to the input data
 • Two classes of generative models normally used

• Directed model
 • One set of parameters to define a prior distribution over the latent variables
 • One set of parameters to define the conditional distributions of the observable variables given the values of the latent variables

• Undirected model
 • Single set of parameters, for e.g. RBM, explained later
Generative pretraining

• Creates some high-level features that won't be of use
 • Others, however, will be far more useful than the raw data

• Allows the fine-tuning to make rapid progress

• Significantly reduces overfitting
Restricted Boltzmann Machines

- RBMs are two-layer neural nets with no intra-layer communication.

- Energy

\[
E(v, h) = - \sum_{i \in \text{visible}} a_i v_i - \sum_{j \in \text{hidden}} b_j h_j - \sum_{i,j} v_i h_j w_{ij}
\]

- Probability that the network assigns to a visible vector, \(v \)

\[
p(v) = \frac{1}{Z} \sum_h e^{-E(v,h)}
\]
Restricted Boltzmann Machines

• The two conditional distributions

\[p(h_j = 1 | v) = \text{logistic}(b_j + \sum_i v_i w_{ij}) \]

\[p(v_i = 1 | h) = \text{logistic}(a_i + \sum_j h_j w_{ij}). \]

P(binary state of each hidden layer = 1 given a randomly selected training case, v)

Unbiased sample of the state of a visible unit, given a hidden vector h

• These can be used for contrastive divergence
Restricted Boltzmann Machines

- CD learning rule: \[\Delta w_{ij} = \epsilon (\langle v_i h_j \rangle_{\text{data}} - \langle v_i h_j \rangle_{\text{recon}}). \]

- This is done by doing a reconstruction by setting \(v_i \) to one according to the conditional probability, then the states of the hidden units are updated again.

- Real-valued data is better modeled by GRBMs.
Gaussian Restricted Boltzmann Machine

• Same idea, different equations

\[E(v, h) = \sum_{i \in \text{vis}} \frac{(v_i - a_i)^2}{2\sigma_i^2} - \sum_{j \in \text{hid}} b_j h_j - \sum_{i,j} \frac{v_j}{\sigma_i} h_i w_{ij} \]

• \(h_j \) still binary, \(v_i \) Gaussian noise with a standard deviation of \(\sigma \)
Gaussian Restricted Boltzmann Machine

- Conditional distributions for GRBMs:

\[
p(h_j | v) = \text{logistic} \left(b_j + \sum_i \frac{v_i}{\sigma_i} w_{ij} \right)
\]

\[
p(v_i | h) = \mathcal{N} \left(a_i + \sigma_i \sum_j h_j w_{ij}, \sigma_i^2 \right)
\]
Deep Belief Networks

- DBNs are created by stacking RBNs

- How?
 1. Train an RBM on the data
 2. Train another RBM to model the significant dependencies between the hidden units of the RBM in step 1
 3. Repeat step 2 for additional layers
 4. Replace undirected connections of lower level RBMs by top-down, directed connections
 5. Add softmax output layer to create pretrained DBN-DNN
Deep Belief Networks
Interfacing a DNN with a HMM

• After the fine-tuning, the DNN will have outputs of the form $p(\text{HMMstate} | \text{AcousticInput})$

• For Viterbi/Forward-Backward algorithm, the probability $p(\text{AcousticInput} | \text{HMMstate})$ is needed

• Through Bayes rule, $p(\text{AcousticInput} | \text{HMMstate})$ is obtained as $p(\text{HMMstate} | \text{AcousticInput}) \times p(\text{AcousticInput}) / p(\text{HMMstate})$

• $p(\text{AcousticInput})$ is unknown
 • All likelihoods scaled by same factor -> no effect on alignment

• Conversion important when unbalanced training data
Small Vocabulary Results (TIMIT)

TIMIT is a small acoustic-phonetic continuous speech corpus. It is often used in benchmarking speech recognition methods. However, good performance with TIMIT does not guarantee good performance with larger corpora.

Observations:

- Triphone GMM-HMM outperformed monophone DBN-DNNs (with MFCC)
- Monophone DBN-DNNs on filterbanks outperformed triphone GMM-HMM
Large Vocabulary Results

- DNN-HMM systems tested on five Large Vocabulary tasks
 - Outperformed GMM-HMMs in every task

- Bing-Voice-Search Speech Recognition Task
 - Trained on 24 hrs of speech data with different variations
 - 5 hidden layers of size 2048
 - Window of 11 frames used to classify middle frame into corresponding HMM state
 - Tri-phone states
 - Sentence accuracy of 69%, compared to 63.8% for the GMM-HMM system
Large Vocabulary Results

- **Switchboard Speech Recognition Task**
 - Dataset over 300h of speech data, test set 6.3h
 - Same system as in Bing, but with 7 hidden layers

- **Google Voice Input Speech Recognition Task**
 - 5870h of data
 - 4 hidden layers, 2560 hidden units per layer
 - Window of 11 frames, 40 log-filterbank features for each frame
 - DNN sparsified -> weights below certain threshold set to zero
Large Vocabulary Results

• **Youtube Speech Recognition Task**
 • Goal is to transcribe Youtube data
 • No strong language model --> Strong acoustic model essential
 • 1400hrs of data
 • 17552 context-dependent tri-phone states in HMM
 • Only 4 hidden layers, to save computation resources for softmax layer

• **English Broadcast News Speech Recognition Task**
 • 50 hrs of data
 • 6 hidden layers, 1024 units each
 • Window of 9 frames
 • 2220 tri-phone HMM states
Large Vocabulary Results

A comparison of the percentage WERs using DNN-HMMs and GMM-HMMs on five different large vocabulary tasks.

<table>
<thead>
<tr>
<th>Task</th>
<th>Hours of training data</th>
<th>DNN-HMM</th>
<th>GMM-HMM</th>
<th>GMM-HMM using larger training data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCHBOARD (TEST SET 1)</td>
<td>309</td>
<td>18.5</td>
<td>27.4</td>
<td>18.6 (2000h)</td>
</tr>
<tr>
<td>SWITCHBOARD (TEST SET 2)</td>
<td>309</td>
<td>16.1</td>
<td>23.6</td>
<td>17.1 (2000h)</td>
</tr>
<tr>
<td>ENGLISH BROADCAST NEWS</td>
<td>50</td>
<td>17.5</td>
<td>18.8</td>
<td></td>
</tr>
<tr>
<td>BING VOICE SEARCH (sentence error rates)</td>
<td>24</td>
<td>30.4</td>
<td>36.2</td>
<td></td>
</tr>
<tr>
<td>GOOGLE VOICE INPUT</td>
<td>5870</td>
<td>12.3</td>
<td>36.2</td>
<td>16.0 (>> 5870h)</td>
</tr>
<tr>
<td>YouTube</td>
<td>1400</td>
<td>47.6</td>
<td>52.3</td>
<td></td>
</tr>
</tbody>
</table>

Aalto-yliopisto
Homework

1. Why is the GMM-model inefficient for modeling speech data?

2. Why do log Mel-scale filter-bank outputs work better than MFCC vectors as inputs for DNN?
References

Questions?