Problem 1: Characteristics of an interior-permanent-magnet motor

The data of an interior-permanent-magnet motor is:

rated voltage	$U_{\rm N} = 400 \ {\rm V}$	direct-axis inductance	$L_{\rm d} = 0.06 \ {\rm H}$
rated current	$I_{\rm N} = 10$ A	quadrature-axis inductance	$L_{\rm q} = 0.10 \ {\rm H}$
pole pairs	p = 2	permanent-magnet flux	$\psi_{\rm f} = 1 \ {\rm Vs}$

The stator resistance is omitted. Draw the following characteristics in the i_d - i_q plane:

- (a) constant current $i_{\rm s} = \sqrt{2}I_{\rm N}$ (rated value);
- (b) constant torque of 30 Nm;
- (c) constant stator flux $\psi_{\rm s} = 1$ Vs.

Problem 2: Current-minimizing control characteristics

Consider the interior-permanent-magnet motor in the preceding problem.

- (a) Derive expressions for the current components i_d and i_q , when the stator current is constant and the torque is maximized.
- (b) Calculate the maximum torque at the rated current.
- (c) Calculate the rotational base speed corresponding to the rated voltage for the current and torque obtained above.
- (d) Calculate the displacement power factor $\cos \varphi$ and draw a vector diagram for the operating point obtained above.