5G and Multi-User MIMO

Petteri Kela
Senior Researcher

Petteri.kela@huawei.com / petteri.kela@aalto.fi
Lecture Topics

- 5G Key Technologies
- MIMO Basics
- Multi-user MIMO
- Massive MIMO
- Coordinator Multi-Point (CoMP)
- 5G Ultra-dense Networks

"Why you should work in wireless? You can always lay down more optical fiber, but you cannot lay down more spectrum.” – Thomas Marzetta
Key 5G Technologies
Introduction – 5G Targets

• The general consensus on the 5G requirements are:
 – 1000x increase in area capacity with respect to the LTE-A
 – 1 ms Round Trip Time (RTT) latency
 – 100x improvement in energy efficiency
 – 10-100x reduction in cost of deployment
 – Mobility support and always-on connectivity of users that have high throughput requirements like 100 Mbps

• Commercial launch around 2020?

• Several Technologies are needed for fulfilling the targets
5G Technologies

- **mmWave Systems**
 - Above 6 GHz spectrum utilization, huge bandwidths available
 - Solutions for serving mobile users not matured enough for the first phase of 5G

- **Advanced MIMO**
 - Multi-User MIMO and Massive MIMO
 - Coordinated Multi-Point (CoMP)

- **Network densification**
 - Ultra-Dense Networks (UDN)

- **Advanced D2D**
 - Helps to reduce latencies and support more simultaneous connections
5G Technologies

- **Multiple access and new waveforms**
 - Filtered-OFDM
 - Waveform technology for supporting different waveforms, multiple access chemes and frame structures based on the application and scenarios and service requirements
 - Co-existence of different waveforms and different OFDM parameters

- **Multi-RAT**
 - Integration of multiple technologies and carrier aggregation of licenced and unlicenced bands to increase available bandwidth

- **Full Duplex**
 - Full-duplex breaks the barrier of today’s communications by supporting bidirectional communications without time or frequency duples
5G Radio Access Virtualization

• Paradigm shift:
 – Cellular -> "Non-cellular" or "cell-less" network

• Elimination of cell boundaries
 – Traditionally link performance may degrade as device moves away from the cell center
 – In virtualized user-centric network, the network determines which access point(s) are to be associated with the user
MIMO Basics
Multiple Input Multiple Output
Multiple Antenna Systems (MIMO)

- Wireless communications are suffering from attenuation and interference
- With multi-antenna systems we can fight against
- Advanced MU-MIMO techniques are promising additional advantages over traditional MIMO solutions
MISO, SIMO and MIMO

- **SIMO**
 - A single transmit antenna and N receiver antennas
 - Receive spatial diversity
 - Requires CSI at receiver

- **MISO**
 - M transmit antennas and a single receive antenna
 - Transmit spatial diversity
 - Requires CSI at transmitter

- **MIMO**
 - M transmit antennas and N receive antennas
MIMO Spatial Multiplexing (SM)

- In theory MxN MIMO can multiply data rate by \(\min(M,N) \) if there is enough multipath
 - Best in urban high-multipath environment (and indoors)
 - Less effective in rural low-multipath environment

- High SINR for reliable decoding and rich scattering environment for high channel rank required
 - It can be seen that the rank of channel matrix \(H \) is precisely the number of non-zero singular values
 - Full rank MIMO channel provides \(\min(M,N) \) spatial degrees of freedom
MIMO Spatial Multiplexing (SM)

- MIMO uses multipath to advantage
 - Data rate can be multiplied by multiplexing data streams through separate paths

$$H = \begin{bmatrix} h_{1,1} & \cdots & h_{1,n} \\ \vdots & \ddots & \vdots \\ h_{m,1} & \cdots & h_{m,n} \end{bmatrix}$$

![Diagram of MIMO spatial multiplexing](image)
Closed-loop SM MIMO

- Requires CSI at transmitter and receiver
 - Transmitter uses CSI for precoding
 - Receiver needs information for stream separation
 - Precoder feedback signalling from user to
 - Codebooks used for limiting feedback signaling data

- Transmitter sends reference signals from each antenna port, which are measured by user

- User figures out optimal choice for precoder from codebook and signals that information to transmitter
Point-to-point MIMO summary

• Brilliant invention
 – Multiplies throughput by \(\min(M,N) \) in ideal high multi-path conditions
 – 2x2 MIMO systems currently available and 4x4/8x8 are also standardized by 3GPP and they are being brought into consumer devices

• Not scalable though
 – Training signaling resources (time/freq.) needs grow with system size
 – Not very good multiplexing gains at cell edge
 • E.g. With 8x4 configuration at -3 dB SNR:

<table>
<thead>
<tr>
<th>TX antennas</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits/s/Hz</td>
<td>1.51</td>
<td>1.83</td>
<td>2.06</td>
<td>2.19</td>
</tr>
</tbody>
</table>
Multi-User MIMO
Space Division Multiple Access
Multi-User MIMO

- Splitting the multi-antenna user into autonomous single antenna users does not decrease the sum-throughput!
- Only simple single antenna user nodes required
- Propagation environment almost always favorable
 - At least when compared to point-to-point MIMO
Multi-User MIMO

- Multiple antennas at the transmitter side and multiple antennas at the receiver side as in all MIMO
 - In MU-MIMO receivers are separated spatially with beamforming

- MIMO channel matrix H for M transmit antennas and N receivers

$$H = \begin{bmatrix} h_{1,1} & \cdots & h_{1,n} \\ \vdots & \ddots & \vdots \\ h_{m,1} & \cdots & h_{m,n} \end{bmatrix}$$
Multi-User Beamforming

- Matched Filter precoding with equal power allocation
 - Hermitian transpose of the channel matrix
 \[W_{MF} = \sqrt{P_t} \frac{H^H}{\|H^H\|_F} \]

- Zero Forcing precoding with equal power allocation
 - Moore-Penrose pseudo-inverse of the channel matrix
 \[W_{ZF} = \sqrt{P_t} \frac{H^+}{\|H^+\|_F} \]

- \(P_t \) is transmit power budget of the access node

- In case of equal power allocation Frobenius norm is used for precoder matrix normalization
 - Provides equal received power allocation regardless of channel condition differences between users
Multi-User MIMO performance evaluation

Signal to Interference plus Noise Ratio for ith user served by single MU-MIMO base station:

$$SINR_i = \frac{S}{I + N} = \frac{\|w_i h_i\|^2}{\sum_{j=1, j \neq i}^{N} \|w_j h_j\|^2 + \sigma_i^2}$$

- w_i is precoding vector for ith user
- h_i is the channel vector for ith user
- σ_i^2 is the variance of the complex-circular zero-mean white Gaussian noise at the nth user

Rather good compact lecture about Massive MIMO and MU-MIMO calculus:
https://www.youtube.com/watch?v=zhncADqR9rg
Massive MIMO
Spatial multiplexing pushed to extreme
Massive MIMO

- MU-MIMO with massive transmit antenna array
 - >100 antenna elements at the base station antenna array

- Using measured channels, beamforming gain grows linearly with number of antennas
 - Channels are measured from uplink training signals i.e. pilots

- Channel measurements basically constrain to TDD and usage of channel reciprocity due to huge number of antennas
 - Channel state information at transmitter (CSIT) needed
 - Receiver does not necessarily need CSI
 - Channel is measured with all transmit antenna elements from orthogonal pilots sent by users
Benefits of Macro Cellular Deployment

• In 4G way of thinking macro cells can handle mobility due to large cell sizes which reduces handovers
 – True, because handovers cause extra latency and network load in LTE

• Today’s deployed 4G networks are mostly based on LTE macro cells only

• In theory, macro cell capacity can boosted with Massive MIMO
 – Spatial multiplexing with massive arrays consisting of hundreds of antenna elements
 – Huge capacity increase potential when number of antenna elements is approaching infinity

• In theory, power consumption can be reduced significantly with M-MIMO
 – when number of antenna elements is approaching infinity, then required TX power approaches ϵ, where ϵ is infinitely small value next to zero
Well Known M-MIMO Research Problems [2]

- Pilot contamination & channel aging
 - Large cell sizes will increase pilot contamination problems
 - It is easy to exhaust the available supply of orthogonal pilot sequences in a multicellular system in a 1ms coherence distance

- Cost of reciprocity calibration
 - TDD requires reciprocity calibration. What is the cost in time and frequency resources in large cells with high active user densities?

- Low cost hardware challenge
 - Building hundreds of RF chains, up/down converters, A/D and D/A converters and so forth

- Power consumption
 - In practice the total power consumption must be considered including baseband signal processing
5G Macro cells with M-MIMO in practice

• With realistic array sizes efficient spatial separation of users in urban environment with M-MIMO is challenging
 – With Zero Forcing (ZF) beamforming intra-cell interference can be eliminated, but it comes with the cost of power consumption [2]
 – Another considered precoding method Matched Filter (MF) precoding on the other hand is not able to separate beams well enough for providing significant capacity boost with M-MIMO [1]

• Channel aging is still a major show stopper for serving high densities of mobile users with M-MIMO [1]
 – Due to ultra short channel coherence distances, zero forcing performance collapses already with moderately moving mobile terminals [1]
M-MIMO has severe problems when serving mobile users in urban environment [1]

- Massive MIMO is (in theory) capable boosting macro cell capacity to new levels, but channel aging and power consumption restrains heavily performance gain in realistic urban environment.

- Further research and novel solutions are needed for boosting up macro cell performance when serving high densities of mobile users in urban environment.

![Graph showing Mean User Throughput (Mbps) with different beam configurations at various speeds.](image)
Coordinated Multipoint MIMO (CoMP)
Reducing inter-cell interference with coordination
Coordinated Scheduling (CoMP-CS)

- Allocate different time and frequency resources to cell edge users served by different cells

- E.g. in synchronized network, neighboring access nodes are using different resource blocks for serving cell edge users
Coordinated Beamforming (CoMP-CB)

- Allocate different spatial resources to users at cell edge, but time and frequency resources are reused.

- Beamforming weights can be calculated in a way that cell edge users served neighbors are nulled:
 - E.g. when calculating zero-forcing precoders, then also users served by neighbouring access node are taken into account, but zero power is allocated on those precoders.
 - Requires CSI from users to be nulled.
Joint Transmission (CoMP-JT)

• Central precoding needed for multiple access nodes (or remote radio heads)
 – Data transmitted simultaneously from multiple access nodes
 – High demand onto the backhaul since data has to be in several places
 – Tight synchronization of access nodes needed
 • Network needs to be time and phase synchronized
 – In theory can get rid of all inter-cell interference
 • ”Hyper cell Massive MIMO with distributed antennas”

• Practical implementation is challenging
 – How to phase synchronize access nodes
 – In large scale, sensitive to channel aging as M-MIMO
 – Interference from outside of coordination area can collapse the gain
CoMP Schemes

- CS/CB schemes share each access node scheduling information
 - Each access node needs to obtain CSI from shared users

- In JT scheme access nodes share their associated users’ information including CSI and users’ data
 - CSI collected in centralized manner for CoMP cluster
Ultra-Dense Networks (UDNs) with densely deployer multi-user MIMO access nodes
Continuous Ultra-Dense Network for 5G

- **Continuous coverage of small access nodes**
 - e.g. lamp posts can be utilized for deployment

- **Centrally controlled user centric mobility**
 - User is agnostic to cells, i.e. no handovers etc.

- **Borderless quality of experience**

- **Always-on connectivity**

- **Network oriented measurements**
UDN Gives High Line-of-Sight Probability

- **Pilot reuse in spatial domain**
 - Helps with pilot contamination problem of Massive MIMO

- **Line of sight propagation**
 - Helps beamforming and reception due to so dominant strongest LoS path

- **Accurate positioning with LoS channels**
 - Position based beamforming
Benefits of Short Distances

- Short Inter-Site Distance (ISD) gives freedom for designing frame structure
 - e.g. in case of OFDM, required cyclic prefix overhead is smaller
 - easier to have enough physical resources for pilots

- Low transmit powers can be used
 - e.g. 0-23 dBm power budgets at access nodes

- <1ms latency target can be achieved with high throughputs
 - Enabler for augmented reality, cloud gaming in vehicles etc.
Performance of 5G C-UDN [1]

- UDN can tolerate spatial CSI beacon reuse for MU-MIMO

- Channel aging is not affecting to performance so much when there is reasonable number of transmit antennas and high LoS probability
Thank you
References
