Principles of Algorithmic Techniques
CS-E3190

Pekka Orponen
Department of Computer Science
Aalto University

Autumn 2017
Lecture 6: Graph algorithms II

- Breadth-first search and shortest paths in graphs
- Shortest paths in weighted graphs: Dijkstra’s algorithm
6.1 Breadth-first search and shortest paths

- Recall: the distance from vertex s to vertex u in a (di)graph G is the length of the shortest path in G leading from s to u.

- Breadth-first search (BFS) started at vertex s:

 for $d = 0, 1, 2, \ldots, \max_{\text{dist}}$

 visit all vertices at distance d from s.

- Implementing this simple idea requires some bookkeeping, conveniently managed by a queue Q of vertices:

 - Initially $Q = [s]$.
 - When vertex v is visited (ejected from front of Q), all its so far undiscovered neighbours are injected to end of Q.

- Note that in this arrangement, Q contains at all times vertices from (at most) two “layers” of G: distance d from s (fully discovered, being visited) and distance $d + 1$ from s (being discovered, none yet visited).
BFS: exploration and search tree

Note that all the paths starting from the root s of a BFS search tree are shortest possible, i.e. it is a shortest-path tree.
BFS: the exploration algorithm

function BFS(G, s);

Input: Graph G = (V, E), start vertex s
Output: for all vertices u reachable from s, dist[u] is set to the distance from s to u

for all u ∈ V do dist[u] ← ∞;
dist[s] ← 0;
Q ← [s];
while Q is not empty do
 u ← EJECT(Q);
 for all edges (u, v) ∈ E do
 if dist[v] = ∞ then
 INJECT(Q, v);
 dist[v] ← dist[u] + 1;
 end
 end
end
BFS: correctness and complexity

- **Correctness (by induction on the following):**

 Claim. In an execution of algorithm BFS\((G, s)\) there is for each \(d = 0, 1, 2, \ldots\), some moment at which:

 (i) for each vertex \(v\) at distance \(\leq d\) from \(s\), the value \(\text{dist}[v]\) is correctly set;

 (ii) for all other vertices \(u\), \(\text{dist}[u] = \infty\);

 (iii) the queue \(Q\) contains exactly the vertices at distance \(d\) from \(s\).

- **Complexity (similarly as in DFS):**

 The running time of BFS\((G, s)\) is \(O(|V| + |E|)\):

 - Each vertex is injected in \(Q\) when it is discovered and ejected from \(Q\) when visiting it is completed; for a total of \(2|V|\) queue operations.

 - Each edge is examined once (in digraphs) or twice (in graphs); for a total of \(O(|E|)\) processing time related to examining the edges.
6.2 Shortest paths in weighted graphs

- BFS determines shortest paths in graphs where all edges have the same length.
- This is of course not the case in many real-life applications, e.g. actual road networks:

![Graph diagram](image.png)

- How to extend BFS to this case?
Adapting BFS to weighted graphs

Consider a weighted graph $G = (V, E, \ell)$, where all the edge weights ("lengths") ℓ_e are positive integers.\(^1\)

Shortest paths in G can in principle be computed by replacing weighted edges by sequences of unit-length ones and then running BFS on the resulting graph G':

This is conceptually correct, but of course not efficient, in particular for graphs with large ℓ_e's.

\(^1\)The length of edge $e = (u, v)$ is denoted alternately by ℓ_e, $\ell(u, v)$, ℓ_{uv}.
Alarm clocks

- In the previous extension of BFS to weighted graphs, most of the exploration consists of uneventful traversal over the dummy nodes:

 ![Diagram](image)

- The process can be speeded up (and the dummy nodes eliminated) by associating to each vertex v an “alarm clock” indicating when some activity pertinent to v may next happen.

- The search algorithm then proceeds in the order of increasing alarm times, and for each alarm attends to the vertex u to which the alarm was associated.
The “alarm clock” BFS algorithm

Set $\text{dist}[s] \leftarrow \infty$ for all vertices v
Set $\text{alarm}[s] \leftarrow 0$ and $\text{alarm}[v] \leftarrow \bot$ for $v \neq s$
Repeat until $\text{alarm}[v] = \bot$ for all vertices v:

Say the next alarm is $\text{alarm}[u] = T$. Then:

Set $\text{dist}[u] \leftarrow T$
Set $\text{alarm}[u] \leftarrow \bot$
For each (out-)neighbour v of u in G:

If $\text{dist}[v] = \infty$,

If $\text{alarm}[v] = \bot$ or $\text{alarm}[v] > T + \ell(u, v)$,
Set $\text{alarm}[v] \leftarrow T + \ell(u, v)$
Dijkstra’s algorithm and priority queues

- The well-known shortest-path algorithm for positive-weight networks by E. Dijkstra (1959) is essentially the “alarm-clock” method, with an efficient implementation for the system of alarms.

- The right data structure for this purpose is the priority queue (usually implemented as a heap), which supports the following operations on a set H of (element, key) -value pairs:\(^2\)
 - **INSERT**(H, (u, x)): Add element u with key value x to set H.
 - **DECREASEKEY**(H, (u, x')): Update the key associated to element u to a new (lower) value x'.
 - **DELETEMIN**(H): Return the element u with the presently lowest key value contained in H, and remove u from H.
 - **MAKEQUEUE**(S): Arrange S, a set of elements and their associated key values, into a priority queue structure.

\(^2\)Concrete implementations of this structure will be discussed at Lect. 15.
Dijkstra’s shortest path algorithm (1/2)

1 function Dijkstra(G, s);

Input: Graph or digraph $G = (V, E)$ with positive edge lengths ℓ_e, start vertex s

Output: For all vertices u reachable from s, $\text{dist}[u]$ is set to the distance from s to u

2 for all $u \in V$ do
3 dist$[u] \leftarrow \infty$;
4 prev$[u] \leftarrow \bot$ \{Predecessor on shortest path from s\};
5 end
6 dist$[s] \leftarrow 0$;

(Continued on next slide.)
Dijkstra’s shortest path algorithm (1/2)

1. $H \leftarrow \text{MAKEQUEUE}(\langle V, \text{dist} \rangle)$;
2. \textbf{while} H \textbf{is not empty} \textbf{do}
 3. \hspace{1em} $u \leftarrow \text{DELETEMIN}(H)$;
 4. \hspace{1em} \textbf{for} all edges $(u, v) \in E$ \textbf{do}
 5. \hspace{2em} \textbf{if} $\text{dist}[v] > \text{dist}[u] + \ell(u, v)$ \textbf{then}
 6. \hspace{3em} $\text{dist}[v] \leftarrow \text{dist}[u] + \ell(u, v)$;
 7. \hspace{3em} $\text{prev}[v] \leftarrow u$;
 8. \hspace{3em} $\text{DECREASEKEY}(H, (v, \text{dist}[v]))$;
 \hspace{2em} \textbf{end}
 \hspace{1em} \textbf{end}
3. \textbf{end}

Dijkstra’s algorithm: example (1/2)
Dijkstra’s algorithm: example (2/2)

Diagram of a graph with edges and vertex labels showing the distances and steps in the algorithm.
Dijkstra’s algorithm: an alternative derivation (1/3)

- An alternative scheme for growing shortest paths from a given start vertex s in a network with positive edge lengths:
 - Maintain a region R of vertices to which distances and shortest paths from s are known.
 - At each expansion step, add to R that vertex v outside of R that is closest to s.

![Diagram of known region](image)
Dijkstra’s algorithm: an alternative derivation (2/3)

- How to identify the correct v?
 - Consider the shortest path from s to v, and the vertex u just preceding v on this path.
 - Since $\ell_{uv} > 0$, it must be the case that $\text{dist}(s, u) < \text{dist}(s, v)$, and so u is already in R. (For otherwise v would not be the closest vertex outside of R.)
 - Thus, the next v to be added to R is one of the outside-R neighbours of one of the inside-R vertices u.

- But which $u \in R$, $v \not\in R$?
 - Well, the ones that minimise $\Delta = \text{dist}(s, u) + \ell_{uv}$.
 - This is the right choice, because:
 (a) Δ is the shortest distance to this v (for otherwise there would be another $u' \in R$, $v' \not\in R$ with smaller value of $\text{dist}(s, u') + \ell_{u'v'}$);
 (b) there cannot be another $w \not\in R$ with $\text{dist}(s, w) < \text{dist}(s, v)$ (by the same argument).
Dijkstra’s algorithm: an alternative derivation (3/3)

The preceding idea leads to the following algorithm scheme:

1. for all $u \in V$ do $\text{dist}[u] \leftarrow \infty$;
2. $\text{dist}[s] \leftarrow 0$;
3. $R \leftarrow \emptyset$;
4. while $R \neq V$ do
 5. pick node $v \not\in R$ with $\text{dist}[v] = \min$;
 6. $R \leftarrow R \cup \{v\}$;
 7. for all edges $(v, z) \in E$ do
 8. if $\text{dist}[z] > \text{dist}[v] + \ell(v, z)$ then
 9. $\text{dist}[z] \leftarrow \text{dist}[v] + \ell(v, z)$;
 end
 end
end

A proper implementation of this scheme is again D’s algorithm.
Dijkstra’s algorithm: complexity

- At an abstract level, Dijkstra’s algorithm corresponds to BFS, and so would have linear complexity.
- However, the priority queue operations are slower than the constant-time queue inject’s and eject’s of BFS.\(^3\)
- Since MakeQueue\((V)\) takes at most as much time as \(|V|\) Insert operations, there are at most a total of:
 - \(|V|\) Insert operations
 - \(|V|\) DeleteMin operations
 - \(|E|\) DecreaseKey operations
- Using e.g. binary heaps as an implementation structure, these give an overall running time of \(O((|V| + |E|) \log |V|)\).

\(^{3}\)Implementation options will be discussed at Lecture 16.