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Previous lecture

» In the last lectures, we have priced options in the binomial
lattice
» The asset price dynamics were calculated using the
binomial lattice formulas derived in Lecture 9
» Lecture 10 presented recursive formulas for calculating the
arbitrage-free price of a derivative
» In this lecture, we will price options using a continuous-time
model for the price of the underlying asset
» Dynamics modelled with stochastic processes
» Arbitrage-free prices of derivatives expressed with
stochastic differential equations
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Wiener-process

» Consider the stochastic process

Z(te1) = z(t) +e(tc) VAL
fkr1 =tk + At ’

where ¢(t;) and (&) (i # j) are independent and
e(t) ~ N(0,1)
» Covle(f;),e(t)] = 0 and £(t;) are normally distributed with
mean 0 and variance 1
» This process is a random walk

» For any j < k, it holds that

k-1
2(t) — 2(t) = Y e(t) VAt
=
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Wiener-process
» As aresult, z(t) — z(f;) is normally distributed and

k-1
E [z(t) - 2(4)] = ZE[5(TI)]\/E =0

i=
k—1 2 k—1

Var [z(t) — z(t)] =E {Z e(h)WVAL| = {Z (4)2At
i=j i=j

= (k—j)At =t — ¢

» In the limit At — 0, the random walk z(t) becomes the
Wiener process (or alternatively, the standard
Brownian motion) defined by the equation

dz = ¢(t)Vdt,
where ¢(t) ~ N(0,1)

MS-E2114 Investment Science: Lecture 11, Options pricing in continuous time
December 8, 2017

Aalto University
School of Science
] 6/37



Wiener-process

» Wiener process z(t) is characterized by the following
properties
1. Forany s < t, z(t) — z(s) is normally distributed such that
E[z(t) — z(s)] = 0 and Var[z(t) — z(s)] =t — s
2. Forany 0 < t < tb < t3 < l, differences z(t) — z(t;) and
z(t4) — z(t3) are uncorrelated
3. z(f) = 0 with probability 1

» The Wiener process in not differentiable anywhere,

because
z(s) — z(t)\? _s—t 1
E( s—t ) _(s—z‘)2_s—l‘_>OO
when s — t

» The term term dz/dt is called white noise
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Generalized Wiener-process and It6 process

» The generalized Wiener process (or alternatively, Brownian
motion with drift) is an extension of the Wiener process
which has a term for deterministic shift

dx(t) = adt + bdz,

where x(t) is a stochastic process, a and b are constants,
dt is differential in time, and z is a Wiener process
» Integration yields

x(t) = x(0) + at + bz(t)

» Ité-process is an extension of the generalized Wiener
process such that the deterministic and stochastic shifts
are functions on x and t, defined through

dx(t) = a(x, t)dt + b(x,t)dz,
where a(x, t) and b(x, t) are integrable functions
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Geometric Brownian motion and standard Ito6 form

» A special case of the It6-process is the
geometric Brownian motion, defined through

dx(t) = axdt + bxdz
» The multiplicative model
InS(k +1) — In S(k) = w(k), w(k) ~N(v,d?)
has the continuous time counterpart

dinS(t) =vdt+odz

» This continuous time model is a geometric Brownian
motion, which can be written® in the standard 1t6 form as
dS(t)

1
W =pudt+odz, whereu:u+§a

'This form is obtained by expanding dIn S(t) using differential calculus

2
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Overview

Black-Scholes equation
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Ito’s lemma

» There is the extra term ¢2/2 in the It6 equation of S(t),
because the random variables have order v/dt, and hence
their squares produce first-order (rather than second order)
effects

» The systematic method for making such transformations
generally is the Ité’s lemma

» The proof of 1td’s lemma is omitted here; however, a sketch
of the proof can be found in Luenberger’s book
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Ito’s lemma

Theorem

(Ité’s lemma) Suppose that the random process x is defined by
the Ité process

dx(t) = a(x, t)dt + b(x, t)dz, (1)

where z(t) is a standard Wiener process. If the process y(t) is
defined by y(t) = F(x,t), then y(t) satisfies the Ité equation

OF  OF 102F , OF
dy(t) = < at ot 5o b)dt+abdz

where z is the same Wiener process as in Equation (1).
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It6’s lemma example
» For example, define x(t) = In S(t) by the 1té process
dx =dInS(t) = vdt+odz

» By It6’s lemma, the random process
y(t) = F(x,t) = S(t) = "5 = ¢ satisfies

ox V' ar Taaxe )ty 7%

X X 1 2 AX X
dy — (8e oe 0°e 02> oe

= (V + 02> e*dt + e odz

02> dt +odz
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Black-Scholes equation

» We have priced options in binomial lattices

» Analogous results can be derived by using stochastic
differential equations

» Assume that

» Price of underlying asset S follows the geometric Brownian
motion

dS = uSdt + 0Sdz, 2)

where z is a Wiener process
» Value of the risk-free asset B satisfies the differential
equation

dB = rBdt

» f(S,t) is the value of a derivative security of the underlying
asset S attime t

School of Science December 8, 2017
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Black-Scholes equation

Theorem

(Black-Scholes equation) Suppose that the price of a security
is governed by the geometric Brownian motion (2) and the
interest rate is r. A derivative of this security has a price f(S, t),
which satisfies the partial differential equation

af 1Pf oo
ot 688 25’ S =
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Black-Scholes equation
Proof: Apply It&’s lemma to (S, t):

of of 10f 5,0 of
Form a replicating portfolio from the underlying asset and the
risk-free asset, i.e., invest x; in the underlying asset and y; in
the risk-free asset. The value differential of this portfolio is

dG = x;dS + y;dB = x;(uSdt + 0Sdz) + y;rBdt
= dG = (xtuS + yrB) dt + xtoSdz

The amounts x;, y; are selected such that the value G of the
portfolio is identical to the value of the derivative f(S, t). As a
result, the coefficients of differentials dt and dz are identical.

From the coefficients of dz, we obtain
of

of
XtoS = ﬁas = Xt = 75"
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Black-Scholes equation

Furthermore, the portfolio must have the same value as the
derivative asset:

G:th—i-th— afs—i—th:f(S,t)

0S
1 of
=>Yt=B[(S - sas]

Substitute x; and y; and choose the coefficients of the df terms
so that they are identical to obtain

of 1 o af 1% 50
25"t B {f(s’ 0- Sas} B = 33“3 t 2587 S
or, of S+lﬂ 282 — rf. O

~ ot T a8’ T 2932
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Overview

Application of Black-Scholes equation
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Application of Black-Scholes equation

» In general, the Black-Scholes equation does not have a
closed form solution
» Certain special cases satisfy the equation

» A derivative whose value is the same as that of the
underlying asset (i.e., f(S,t) = S)

=04+1rS+0=rS
» Risk-free asset as a derivative instrument (i.e., (S, t) = ")

of 4 of 82f_
a7re A@fw@fo

= re"+0+0=re"
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Application of Black-Scholes equation

» How to use Black-Scholes equation?

» Pick or guess f(S, t): If it does not satisfy the BS-equation,

there are arbitrage opportunities
= Mispriced asset!

» Give boundary conditions (e.g., value of option on expiry)

and solve the equation
» For example, the boundary conditions of a European call
option are

C(0,t) =0, C(S,T)=max(S—K,0)

» An American call can be exercised before expiry
= The value of the option satisfies

C(S,t) > max(S — K, 0)
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Application of Black-Scholes equation

» Example: Consider an American call with unlimited time to
expiry (perpetual call)
» Boundary conditions

c(S, )
c(S, )

max{S — K,0}

2
<S§

» Solution C(S, t) = S satisfies these conditions
» Interpretation: The price of the underlying asset will in
the long run increase so much that the strike price of the
option becomes irrelevant
= The option and the call have the same value

» The BS equation has an analytical solution for the
European call
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Call option formula

Theorem

(Black-Scholes call option formula) Consider a European
call option with strike price K and expiration time T. If the
underlying stock pays no dividends during the time [0, T] and if
interest is compounded continuously at a constant rate r, the
Black-Scholes solution is f(S, t) = C(S, t), defined by

C(S,t) = SN(d;) — Ke "\T-DN(d,), where
In(S/K) + (r + a2/2)(T — 1)

dr = VT —1
o _ In(S/K) +U(&%2t/2)(7 D g ovT

and where N(x) denotes the standard cumulative normal

probability distribution N(x / e Y/2dy
- 75
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Call option formula example
» Let us revisit the example in Lecture 10 in which the stock
price is 80 € and volatility 0.40
» Consider a European call which expires in four months
with the strike price 85 €
» What is the price of the option, when the risk-free rate is
8% and no dividends are paid?
S=80, K=85 r=0.08, ando =0.40, so
_ In(80/85) + (0.08 + 0.40%/2)(4/12)
B 0.40./4/12
d>» =d; — 0.40,/4/12 = —0.2625
and N(d;) =0.4874, N(d>) = 0.3965, and hence
C(S,t) =80-0.4874 — 85 . ¢ 008(4/12) . 0 3965 = 6.18
» The value of the call is 6.18 €, which is slightly less than
the price we obtained from the binomial lattice (6.40 €)

d = 0.0316

School of Science Decem!
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Delta A

» Delta A measures how sensitive the value of the derivative
(e.g., an option) is with respect to changes in the price of
the underlying asset

A= of(S,t) _ Af(S,t)

- 9SS T AS
» By Black-Scholes, the delta of a European call is N(d)

» E.g., an investor thinks that a call is over priced (so selling

them can lead to arbitrage)
» Sell n call options
» Buy A - nshares of the underlying asset

» This portfolio is delta-neutral (i.e. immune to changes in

the value of the underlying asset)

8‘95 (=nC(S, 1)+ A - nS) = n(—A + A) = 0
» Delta depends on S and t

= Portfolio must be rebalanced (continuously)

School of Science Decem! ber 8, 2017
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Gamma I and theta ©

» The amount of required rebalancing is related to the
curvature of the value (second order derivative) ; this is the
gamma

B 02f(S, 1)

082

» Theta © is the change in the value of a derivative with
respect to time

r

9£(S, 1)
at

» Over time, the value of the option approaches the value
that is has at exercise
» Time value diminishes = © is negative for options
» The Taylor approximation for option value

0=

5mA.5s+%r-(53)2+e-5t
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Option value Taylor approximation

» Let S =43 €, volatility o = 0.20, and risk-free rate r = 0.10
» Consider a European call which expiresin T —t=6
months with strike price K = 40 €
» The option price is calculated with Black-Scholes call
option formula
dy =0.936, d»=0.794= C =556

» Delta, gamma and theta are

N'(ch)
A=N(d)=0825 T =——=
() ’ SovT —t
SN'(dy)o

ST rKe 'TN(db) = —6.127
2T~ 1 ()

» If the price of stock rises by one euro in a week, the value
of the option becomes

1 1
C’mC+6C:5.56+A-1+§F-12+@-§:6.22
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Overview

Synthetic and exotic options

Aalto University
School of Science
[ ]

MS-E2114 Investment Science: Lecture 11, Options pricing in continuous time
December 8, 2017
27/37



Synthetic options

» A return identical to an option can be obtained from a
portfolio of the underlying asset and the risk-free asset

» Portfolio value tracks the value of the option, but the

portfolio must be continuously rebalanced
» A synthetic option can be constructed as follows:

1. Define the value C of an option (e.g., using binomial lattice
or Black-Scholes)

2. Invest AS in the underlying asset and the rest C — AS at
the risk-free rate

3. Rebalance the portfolio frequently so that the portfolio has
the required A

School of Science December 8, 2017
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Synthetic option example

Weeks
. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
remaining
XON 35.50 34.63 33.75 34.75 33.75|33.00 33.88 34.50 33.75 34.75(34.38 3513 36.00 37.00 36.88 [ 38.75 37.88 38.00 38.63 38.50 |37.50
price
call 262 196 140 189 125|085 117 142 096 140 | 110 144 194 265 244 | 410 3.17 321 376 357 |250
price
Delta 0.701 0.615 0.515 0.618 0.498 | 0.397 0.494 0.565 0.456 0.583 [ 0.522 0.624 0.743 0.860 0.858 [ 0.979 0.961 0.980 0.998 1.000
Portlfolio 262 196 139 187 122|081 1.14 141 096 138 | 1.13 149 200 269 253 | 408 3.16 3.22 3.76 3.57 |250
value
Stzct 4.89 2128 17.37 21.47 16.79 [ 13.09 16.74 19.48 1539 20.27 | 17.94 21.92 26.74 31.80 31.65|37.92 36.39 37.25 38.56 38.50
portfolio
B(:'n(: -22.27 -19.32 -15.98 -19.59 -15.58 (-12.28 -15.60 -18.07 -14.43 -18.89|-16.81 -20.43 -24.75 -29.11 -29.12|-33.84 -33.23 -34.03 -34.79 -34.93
portfolio
» A synthetic call option on Exxon stock with a strike price of
35 € and with 20 weeks to expiration is constructed by
. . ) o
buying the stock and selling the risk-free asset at 10%
» The portfolio is adjusted each week based on the value of

delta A at that time

A~
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Exotic options

» Some options are more complicated than the American
and European options we have treated
1. Bermudan option: Early exercise possible on specific dates
before expiry
2. Compound option: An option on another option
3. Chooser option: The holder specifies after a given time
whether the option is a call or a put
4. CAP option: Automatically exercised if the price of
underlying asset exceeds the specified given limit
» E.g., if a 20 € CAP-call option has strike 60 €, it will be
automatically exercised when the stock price exceeds 80 €
5. Knockout option:Expires if the price of underlying asset
reaches the specified level
» Call expires if price of underlying asset below knockout level
("down and out")
» Put expires if price of underlying asset above knockout level
("up and out")

Aalto University MS-E2114 Investment Science: Lecture 11, Options pricing in continuous time
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Exotic options

6. Discontinuous option: Profit depends discontinuously on
the price of the underlying asset
» E.g., return 100 € if the price of the underlying asset is
above the strike price at expiry; otherwise 0
7. Digital option: Has a payoff 1 € if the corresponding
European option is in the money and 0 € otherwise
8. Lookback option: Exercise price is determined by the
minimum and maximum values obtained by the underlying
asset during the period of the option
» Put option exercise price = highest value of the underlying
asset during the option period
» Call exercise price = lowest value of the underlying asset
during the option period
= Lookback options have always a positive value at expiry
= They are expensive
9. Asian option: Profit depends on the average underlying
asset price Sag during the period of the option

School of Science December 8, 2017
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Overview

Computational methods
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Monte-Carlo simulation

» Let the underlying asset of a derivative follow geometric

Brownian motion
dS = rSdt +0Sdz,

where r is the risk-free rate and z is a Wiener process
» Note that when pricing using risk neutral probabilities, the
"drift"-term is r (and not )
» Value of the underlying asset can be simulated as

S(tx + At) = S(tk) + rS(t) At + o S(t)e(tx),

where ¢({x) are normally distributed with expected value 0
and variance At
= Obtain S(t) and f(S, t) =value of derivative at time T
» With linear pricing, the value of the derivative is the
discounted risk neutral expected value of f(S, T)
» The value can be estimated as

P=e"TAg[f(S,T)
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Finite difference methods

» Black-Scholes can discretized by considering finite price
and time differences AS and At

of i1 — 1

S~ AS
Pf (fiyrj—fij) — (fij—fiiaj)
082 "~ (AS)?

of - fijs1 —Tij

ot At

» Solve by

1. Setting boundary conditions

2. Solving interior points iteratively by starting from the
boundary
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Binomial and trinomial lattices

p u
P2
P3

d

» Binomial lattice treated in Lecture 10
» Good for explaining theory, not state-of-the-art
» Trinomial lattice more accurate than binomial lattice, but
then the value of an option cannot be replicated by only
using the underlying asset and the risk-free asset (three
possible outcomes, only two free parameters to fit)
» Pricing follows from no arbitrage condition: On risk-neutral
expectation, the return of every asset is the risk-free rate

School of Science ecember 8, 2017
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Binomial and trinomial lattices

p u
P2 1
P3

d

» If the one-period (length At) mean value of the underlying
asset is 1 + uAt and the variance is o?At , then the
probabilities are selected to satisfy

p1+p2+p3=1
upt + p2 + dps =1 + pAt

UPp1 + P2 + d%ps = oAt + (1 + pAt)?,

where the last line represents E[x?] = Var[x] + E[x]?
» To use this lattice for pricing, the risk-neutral probabilities
a1, @2, 3 have to be used instead
» These are found by solving the same set of equations such
that the mean value is changed to 1 + rAt
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