• converters for soft switching
Why resonant converters

• Hard switching is based on on/off
 – Switching losses
 – Electromagnetic Interference (EMI) because of high \(\frac{du}{dt} \) and \(\frac{di}{dt} \)

• SMPS size decreases with increasing switching frequency
 – Target is to use as high \(f_s \) as possible
 – Switching losses are reduced if voltage and/or current are zero during switching
One Inverter Leg

The output current can be positive or negative
Chapter 9 Resonant Converters

Hard Switching Waveforms

Figure 9-2 Switch-mode inductive current switchings.

- The output current can be positive or negative
Change over

- **T-** conducts I_0 and it is turned off
 - Voltage over it increases and when it is U_d diode D+ starts to conduct
 - Because of parasitic inductances voltage exceeds U_d
- **D+** conducts I_0 and **T-** is turned on
 - Current increases and exceeds I_0 because of diode reverse recovery current
 - After recovery of the diode voltage over T- drops to nearly zero
Turn-on and Turn-off Snubbers

- Turn-off snubbers are used, turn-on very seldom

Figure 9-3 Dissipative snubbers: (a) snubber circuits; (b) switching loci with snubbers.
Switching Trajectories

- Comparison of Hard versus soft switching

Figure 9-4 Zero-voltage-/zero-current-switching loci.
Switching losses

• Voltage and current stresses of the switches can be reduced by snubber circuits (Finnish kytkentäsuojapiiri)
 – Losses are transferred from the switch to the R of the RC-snubber
 – C discharges through R when switch is turned on
 – Total losses do not necessarily decrease, requires careful dimensioning

• In resonant circuit switching losses in theory can be even zero
Basics of resonant circuits

Series resonance
Lossless parallel resonant circuit
Undamped Series-Resonant Circuit

Figure 9-5 Undamped series-resonant circuit; i_L and v_c are normalized: (a) circuit; (b) waveforms with $I_{LO} = 0.5$, $V_{c0} = 0.75$.

- The waveforms shown include initial conditions
Series resonance

- Equations
 \[L_r \frac{di_L}{dt} + u_C = U_d \]
 \[C_r \frac{du_C}{dt} = i_L \]

- Solution from time \(t = 0 \)
 \[i_L = I_{L0} \cos \omega_0 t + \frac{V_d - V_{C0}}{Z_0} \sin \omega_0 t \]
 \[v_C = V_d - (V_d - V_{C0}) \cos \omega_0 t + Z_0 I_{L0} \sin \omega_0 t \]

- Resonance frequency and impedance
 \[\omega_0 = 2\pi f_0 = \frac{1}{\sqrt{L_r C_r}} \]
 \[Z_0 = \sqrt{\frac{L_r}{C_r}} \]

- Often per unit values are used
 \[V_{\text{base}} = V_d \]
 \[I_{\text{base}} = \frac{V_d}{Z_0} \]
Series-Resonant Circuit with Capacitor-Parallel Load

Figure 9-6 Series-resonant circuit with capacitor-parallel load (i_L and v_c are normalized): (a) circuit; (b) $V_{c0} = 0$, $I_{L0} = I_o = 0.5$.

- The waveforms shown include initial conditions
Series-Resonant Circuit with Capacitor-Parallel Load

- Equations
- Derivation

\[v_C = V_d - L_r \frac{di_L}{dt} \quad i_L - i_C = I_o \]

\[i_C = C_r \frac{dv_C}{dt} = - L_r C_r \frac{d^2 i_L}{dt^2} \]

- And using

\[\frac{d^2 i_L}{dt^2} + \omega_0^2 i_L = \omega_0^2 I_o \]

- Solution is

\[i_L = I_o + (I_{L0} - I_o) \cos \omega_0 t + \frac{V_d - V_{C0}}{Z_0} \sin \omega_0 t \]

\[v_C = V_d - (V_d - V_{C0}) \cos \omega_0 t + Z_0 (I_{L0} - I_o) \sin \omega_0 t \]
Impedance of a Series-Resonant Circuit

- Quality factor

\[Q = \frac{\omega_0 L_r}{R} = \frac{1}{\omega_0 C_r R} = \frac{Z_0}{R} \]

- The impedance is capacitive below the resonance frequency

Figure 9-7 Frequency characteristics of a series-resonant circuit.
Undamped Parallel-Resonant Circuit

\[i_L + C_r \frac{dv_C}{dt} = I_d \]
\[v_C = L_r \frac{di_L}{dt} \]
\[i_L = I_d + (I_{L0} - I_d) \cos \omega_0 t + \frac{V_{C0}}{Z_0} \sin \omega_0 t \]
\[v_C = V_{C0} \cos \omega_0 t + Z_0 (I_d - I_{L0}) \sin \omega_0 t \]

\[\omega_0 = 2\pi f_0 = \frac{1}{\sqrt{L_r C_r}} \]
\[Z_0 = \sqrt{\frac{L_r}{C_r}} \]

Figure 9-8 Undamped parallel-resonant circuit.
Impedance of a Parallel-Resonant Circuit

\[Q = \frac{\omega_0 R C_r}{\omega_0 L_r} = \frac{R}{Z_0} \]

- The impedance is inductive below the resonant frequency
- At resonance frequency imaginary part of admittance is zero, i.e. impedance is infinite

Figure 9-9 Frequency characteristics of a parallel-resonant circuit.
Load resonant converters

• **Series Load Resonant (SLR) Converter**
 - Discontinuous area $\omega_s < \omega_0/2$
 - Continuous area $\omega_0/2 < \omega_s < \omega_0$
 - Continuous area $\omega_s > \omega_0$
 - Steady state characteristics
 - Control of SLR

• **Parallel Load Resonant (PLR) Converter**
 - Discontinuous area
 - Continuous area $\omega_s < \omega_0$
 - Continuous area $\omega_s > \omega_0$
 - Steady state characteristics

• **Hybrid-resonant converter**
Load resonant converters

• Converter has LC-resonant circuit and load current goes through it
 – Both series and parallel resonance

• Voltages and current in the resonant circuit are introducing zero voltage or current switching

• Load power is controlled by adjusting switching frequency in relation to resonance frequency
 – Impedance of the resonant circuit changes
Series Load Resonant (SLR) Converter

The transformer is ignored in this equivalent circuit.

Figure 9-10 SLR dc–dc converter: (a) half-bridge; (b) equivalent circuit.

- The transformer is ignored in this equivalent circuit
Principle

• Full-bridge and transformer connection are also possible
• Current of the resonant circuit is rectified in the diode bridge
• Output voltage U_o is assumed to be constant and its polarity depends on the sign of current i_L of the resonant circuit
Polarity of voltages

• Positive current

\[T_+ \text{ conducts } \quad u_{AB} = \frac{U_d}{2} \quad u_{AB}' = \frac{U_d}{2} - U_o \]

\[D_- \text{ conducts } \quad u_{AB} = -\frac{U_d}{2} \quad u_{AB}' = -\frac{U_d}{2} - U_o \]

• Negative current

\[T_- \text{ conducts } \quad u_{AB} = -\frac{U_d}{2} \quad u_{AB}' = -\frac{U_d}{2} + U_o \]

\[D_+ \text{ conducts } \quad u_{AB} = \frac{U_d}{2} \quad u_{AB}' = \frac{U_d}{2} + U_o \]
SLR Waveforms, DCM, $\omega_s < \omega_0/2$

Figure 9-11 SLR dc–dc converter; discontinuous-conduction mode with $\omega_s < \frac{1}{2} \omega_0$.

Chapter 9 Resonant Converters
Operation

• Current of $T+$ is zero
 – Turned on at $\omega_0 t_0$

• At $\omega_0 t_1$ current of resonant circuit turns and $D+$ conducts, because $T-$ is not turned on yet ($\omega_s < \omega_0/2$)

• After 180°, at $\omega_0 t_2$ current goes to zero
 – Because of symmetry, capacitor voltage is $2U_o$

• Because $2U_o < U_d/2 + U_o$ inductor current is not increasing but it is discontinuous

• At $\omega_0 t_3$ control is given to $T-$ and negative half cycle starts
Remarks

• Switches are turning off naturally as current goes to zero
 – Even thyristors could be used

• Switches are turning on when current is zero but voltage not

• Peak value of current in the resonant circuit is much higher than the average of output current
SLR Waveforms, CCM, $\omega_0/2 < \omega_s < \omega_0$

Figure 9-12 SLR dc–dc converter; continuous-conduction mode with $\frac{1}{2} \omega_0 < \omega_s < \omega_0$.

Chapter 9 Resonant Converters
Operation

• Switch T+ current ≠ 0
 – It is turned on at $\omega_0 t_0$, voltage is U_d
 – Switch conducts less than 180°
 – At $\omega_0 t_1$ current i_L becomes negative and D+ conducts

• T- is turned on at $\omega_0 t_2$
 – This is earlier than in the previous DCM operating area $\omega_s < \omega_0/2$
 – D+ conducts less than 180°
Devices

• Turning on
 – Current and voltage are not zero => losses

• Turning off
 – Current and voltage are zero
 – Even thyristors could be used

• Reverse recovery current of the diodes must be small
SLR Waveforms, CCM, $\omega_s > \omega_0$

Figure 9-13 SLR dc–dc converter; continuous-conduction mode with $\omega_s > \omega_0$.

Chapter 9 Resonant Converters

9-28
Operation

• Current of T+ is zero and it is turned on at $\omega_0 t_0$
• T+ is turned on at $\omega_0 t_1$
 – This is before the current has become zero
 – D- starts to conduct
 – Voltage over the LC-circuits is high and diode current goes rapidly to zero
• T- is turned on immediately as D- starts to conduct
 – T- can conduct as the polarity of the current changes
Switches

- Turn-on at zero current and voltage
- Turning off takes place close to the peak of the resonant current
 - Turn-off losses
- Before the switch starts to conduct the antiparall diode has conducted
 - Voltage over switch is ≈ 0
 - It is possible to use lossless snubbers, i.e. only snubber capacitor in the circuit as there is no discharge current when the switch is turned on
Lossless Snubbers in SLR Converters

- The operating frequency is above the resonance frequency.

Figure 9-14 Lossless snubbers in an SLR converter at $\omega_s > \omega_0$.

Chapter 9 Resonant Converters
SLR Converter Characteristics

- Output Current as a function of operating frequency for various values of the output voltage

Figure 9-15 Steady-state characteristics of an SLR dc–dc converter; all parameters are normalized.
SLR Converter Control

• The operating frequency is varied to regulate the output voltage.

• In full-bridge converters frequency can also be constant and voltage is controlled phase-shifting leg voltages, \((D = 50\%)\).

Figure 9-16 Control of SLR dc–dc converter.
Parallel Load Resonant (PLR) Converter

Figure 9-17 PLR dc–dc converter: (a) half-bridge; (b) equivalent circuit.

- The transformer is ignored in this equivalent circuit.
Principle

- Voltage of C_r is rectified and filtered
- Output current is assumed to be constant during switching cycle
- Voltage over the resonant circuit

\[
{u_{AB}} = \frac{{{U_d}}}{{2}} \quad T_+ \quad \text{or} \quad D_+ \quad \text{conducts}
\]

\[
{u_{AB}} = -\frac{{{U_d}}}{{2}} \quad T_- \quad \text{or} \quad D_- \quad \text{conducts}
\]

- Operation depends on i_L and u_C
• The current is in a discontinuous conduction mode
Operation (1/2)

- T+ is turned on at $\omega_0 t_0$, $i_L = u_C = 0$
- Constant output current flows through the diode bridge and keeps capacitor voltage as zero
 - After $\omega_0 t_1$ current difference charges resonant capacitor
- LC-circuit current i_L goes to zero at $\omega_0 t_2$ and becomes negative
 - D+ conducts as T- is not turned on
Operation (2/2)

- Gate of T+n is removed before $\omega_0 t_3$: a
 - i_L remains zero
 - Cr discharges in time $\omega_0 (t_3 - t_4)$ with I_o
 - After this we are in the beginning
- Output voltage average is adjusted with time $t_5 - t_4$
- No turn-on or turn-off losses in diodes
PLR Waveforms, CCM, $\omega_s < \omega_0$

- The operating frequency is below the resonance frequency.

Figure 9-19 PLR dc–dc converter in a continuous mode with $\omega_s < \omega_0$.

Chapter 9 Resonant Converters
The operating frequency is above the resonance frequency.
PLR, CCM

• No trun-on losses
• Turn-off with current
 – Losses
 – Losses can be reduced with lossless snubber as in SLR
PLR Converter Characteristics

- Output voltage as a function of operating frequency for various values of the output current

Figure 9-21 Steady-state characteristics of a PLR dc–dc converter. All quantities are normalized.
PLR Characteristics

- **DCM**
 - Output voltage doesn’t depend on current
 - Many parallel outputs are possible
 - Output voltage depends linearly from switching frequency
- Output voltage can be higher than input
- Maximum current and voltage much higher than I_o and U_d
PLR versus SLR

• PLR
 – Acts as voltage source
 • Fits for multiple output SMPS
 – No built-in overload protection
 – Both step up and step down operation
Hybrid-Resonant DC-DC Converter

- Combination of series and parallel resonance

Figure 9-22 Hybrid-resonant dc–dc converter.
Parallel-Resonant Current-Source Converter

Figure 9-23 Basic circuit for current-source, parallel-resonant converter for induction heating: (a) basic circuit; (b) phasor diagram at \(\omega_s = \omega_0 \); (c) phasor diagram at \(\omega_s > \omega_0 \).

- Basic circuit to illustrate the operating principle at the fundamental frequency
Parallel-Resonant Current-Source Converter

- Using thyristors; for induction heating

Figure 9-24 Current-source, parallel-resonant inverter for induction heating: (a) circuit; (b) waveforms.
Chapter 9 Resonant Converters

Class-E Converters

\[i_d = i_d \]

\[V_d \]

\[R_{\text{load}} \]

\[C_r \]

\[L_r \]

\[i_c1 = i_d + i_o \]

\[V_T \]

\[V_d \]

\[i_c1 = i_d + i_o \]

\[i_T = i_d + i_o \]

\[\hat{I}_T \]

\[\hat{V}_T \]

\[i_o \]

\[I_d \]

\[I_o \]

\[t \]

\[t \]

\[t \]

\[t \]

\[(a) \]

\[(b) \]

\[(c) \]

\[(d) \]

Figure 9-25 Class E converter (optimum mode, \(D = 0.5 \)).
Class-E Converters

Figure 9-26 Class E converter (nonoptimum mode).
Resonant Switch Converters

Classifications

Figure 9-27 Resonant-switch converters: (a) ZCS dc–dc converter (step-down); (b) ZVS dc–dc converter (step-down); (c) ZVS-CV dc–dc converter (step-down).
Resonant Switch Converters

• Similar ideas was used before gate turn-off devices
 – Thyristors were used in dc-dc converters and dc-ac inverters => additional LC circuit used to turn-off conduction thyristor (e.g. McMurray-circuit)

• Nowadays also in power supplies

• Transformer parasitic inductances and other parasitics can be used in LC-circuits
Classification

- **ZCS, zero-current-switching**
 - Switch turns on and off without current

- **ZVS, zero-voltage-switching**
 - Switch turns on and off without voltage

- **ZVS-CV, zero-voltage-switching, clamped voltage**
 - As before but at least two switches
 - Voltage over switch is limited to the supply voltage
ZCS Resonant-Switch Converter

Figure 9-28 ZCS resonant-switch dc–dc converter.
Operation principle

- Current I_o goes through the diode
 - C_r is charged to the supply voltage U_d
- Switch is turned on
 - Diode D conducts until at t_1 current is equal to the load current
- L_rC_r is a resonant circuit discharging C_r
 - At t_2 current goes to zero and switch turns off
- Output current I_o charges C_r to the supply voltage
 - At t_3 diode starts to conduct
ZCS Resonant-Switch Converter

Figure 9-29 v_{oi} waveform in a ZCS resonant-switch dc–dc converter.

- Waveforms; voltage is regulated by varying the switching frequency, time interval $t_4 - t_3$
Properties

- Resonant frequency in MHz area
 resonanssitaajuus valitaan MHz-alueelle

- Switch turns on and off without current
 - At turn-off switch voltage is U_d => turn-off losses

- Output current
 $$I_o < V_o/Z_0, Z_0 = \sqrt{L_r/C_r}$$

- When output current increases output voltage decreases
 - Switching frequency is increased

- Antiparallel connected diode
 - At low load resonant circuit energy can be supplied back to the supply
Electromagnetic Interference, EMI

• Losses and EMI due to the converter are reduced when soft switching is used

• Peak current of switch
 – High when compared to the output current
 – Conduction losses are higher than in hard switching
 – EMI increases???
ZCS Resonant-Switch Converter

• A practical circuit
• Capacitor is in parallel with the diode

Figure 9-30 ZCS resonant-switch dc–dc converter; alternate configuration.
Operation

• When switch is turned on its current increases linearly until $i_T = I_o$
 – Diode turns off

• Current $i_T - I_o$ charges capacitor after t_1

• At t_2 current i_T goes to zero and switch turns off

• Capacitor is discharged with output current
ZVS Resonant-Switch Converter

- Capacitor is connected in parallel with the switch => limits voltage changes
- Serious limitations

Figure 9-31 ZVS resonant-switch dc–dc converter.
Operation

- **Switch is turned off when it conducts** I_o
 - Capacitor C_r charges with constant current

- **At t_1 $u_C = U_d$**
 - Diode D conducts, $C_r L_r$ resonant circuit

- **At t_2 C_r voltage becomes zero**
 - D_r starts to conduct, gate control is given to switch and current i_L increases linearly
 - A t_2 current is positive and it goes through the switch

- **At t_3 i_L is equal to I_o and D stops to conduct**
ZVS Resonant-Switch Converter

Output voltage

Figure 9-32 The v_{oi} waveform in a ZVS resonant-switch dc–dc converter.
Comparison of ZCS and ZVS

- **ZCS**
 - Switch maximum current: \(I_o + V_d / Z_0 \)
 - Output current limited: \(I_o < V_o / Z_0 \), \(Z_0 = \sqrt{L_r / C_r} \)

- **ZVS**
 - Switch maximum voltage: \(V_d + I_o Z_0 \)
 - Output current must be larger than: \(V_d / Z_0 \)
 - High voltage switch is needed if output power variation is large
MOSFET Internal Capacitances

- These capacitances affect the MOSFET switching
- ZVS is better for MOSFET
- ZCS good e.g. for IGBT’s because of tail current

Figure 9-33 Switch internal capacitances.
Zero-voltage-switching, clamped-voltage, ZVS-CV

- The inductor current must reverse direction during each switching cycle.

Figure 9-34 ZVS-CV dc–dc converter.
ZVS-CV

- Switch turn on and off with zero voltage
 - Maximum voltage is clamped to input voltage
- L_f is small when compared to hard switching
 - Its current is both positive and negative
- T^+ conduct current and it is turned off
 - Voltage over it is zero because of C_+
ZVS-CV DC-DC Converter

- One transition is shown
- In Fig c) \(C_+ = C_- = C/2 \)
- \(i_L \) is not change much during \(t_0 - t_0' \).

Figure 9-35 ZVS-CV dc–dc converter; \(T_+, T_- \) off.
Operation (1/2)

• Condensator C_- has discharged at t_0´
 – Inductor’s current decreases linearly as D- conducts and $u_L = -U_o$.
 – At the same time gate control to T-
 – When current polarity changes at t_0´´ switch starts to conduct

• T- is turned of at t_1 with zero voltage ($u_{C-} = 0$)
 – When C_- is charged to U_d and C_+ has discharged, negative current flows through diode D+
Operation (2/2)

- After t_1 voltage over inductor is positive
 - Its current is positive after t_2 when $T+$ conducts
- For ZVS capacitor is connected parallel to the switch
 - Capacitor must be discharged when switch is turned on
 - It is discharged if antiparallel diode has been conducting
 - Therefore current i_L has to have both polarities
Control of output voltage

- Constant frequency PWM can be used
 - Durations $t_0 - t_0'$ and $t_1' - t_1$ can be assumed short
 - Output voltage is square wave $\Rightarrow U_o \approx D U_d$

- L_f must be dimensioned so that
 - Even with smallest U_d and highest load current instantaneous value of i_L is also negative
ZVS-CV Principle Applied to DC-AC Inverters

- Even in dc-dc converter inductor current had negative values, now both polarities are equal
- Very large ripple in the output current
Control of output voltage

- In full bridge delay between pole voltages can be adjusted.
Three-Phase ZVS-CV DC-AC Inverter

Figure 9-37 Three-phase, ZVS-CV dc-to-ac inverter.

- Very large ripple in the output current
ZVS-CV with Voltage Cancellation

- Commonly used
- L_m is magnetizing inductance of transformer
Inverter

- The dc-link voltage is made to oscillate

Figure 9-40 Resonant-dc-link inverter, basic concept: (a) basic circuit; (b) lossless $R_t = 0$; (c) losses are present.
Three-Phase Resonant DC-Link Inverter

Figure 9-41 Three-phase resonant-dc-link inverter.

- Modifications have been proposed.
High-Frequency-Link Inverter

- Basic principle for selecting integral half-cycles of the high-frequency ac input

Figure 9-42 High-frequency-link integral-half-cycle inverter.
High-Frequency-Link Inverter

- Low-frequency ac output is synthesized by selecting integral half-cycles of the high-frequency ac input.

Figure 9-43 Synthesis of low-frequency ac output.
High-Frequency-Link Inverter

Figure 9-44 High-frequency ac to low-frequency three-phase ac converter.

• Shows how to implement such an inverter