

Basic Principles in Networking

IPsec

Stephan Sigg

Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi

Version 1.0, April 1, 2019

Lecture overview

Monday				Wednesday			Deliverables		
	25.02.	Principles of Cryptography	27.	.02.	Tutorial on Arduino				
	04.03.	Message Integrity, digital signatures, End-point authentication	06.	5.03.	Exercise: Cryptography		13.03.	Cryptography	
	11.03.		13.	.03	Exercise: Digital signatures		13.03.	Digital Signatures	
	18.03.	Securing Email	20.	.03.	Exercise: Authentication		27.03.	Authentication	
	25.03.	Securing TCP	27.	.03.	Exercise: PGP		27.03.	PGP	
	01.04.	Ipsec and VPNs	03.	3.04.	Exercise: SSL		10.04.	SSL	
	08.04.	Summary and feedback	10.	.04.	Exercise: Ipsec & VPN		10.04.	Ipsec & VPN	

Motivation (5 min)

Sha-1 collision (Defcon 2017)

Part I (20 min)

IPsec

OSI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

TCP/IP Stack

Application

Transport

Internet

Network Access

With confidentiality at network layer ...

OSI Model
Application
Presentation
Session
Transport
Network
Data Link
Physical
TCP/IP Stack
Application
ITCP/IP Stack
ITCP/IP S

...all protocol and type information hidden (e.g. TCP, UDP, ICMP, SMTP, ...)

IPSec Services

- confidentiality
- 2 authentication
- data integrity
- replay-attack prevention

With confidentiality at network layer ...

...all protocol and type information hidden (e.g. TCP, UDP, ICMP, SMTP, ...)

VPNs

Stand-alone physical network including routers, links and DNS infrastructure Separated from the public internet

IPSec Services

- confidentiality
- authentication
- data integrity
- replay-attack prevention

IPSec Services

- confidentiality
- authentication
- data integrity
- replay-attack prevention

VPNs

Stand-alone physical network including routers, links and DNS infrastructure Separated from the public internet High maintenance cost

IPSec Services

- confidentiality
- authentication
- data integrity
- replay-attack prevention

VPNs

institution's inter-office traffic is sent over the public internet rather than over a prhysical independent network.

IPsec and VPNs

Security associations

IPsec Security Association 32-bit identifier for SA Security associations (Security Parameter Index (SPI)) Internet Origin (200.168.1.100) & destination (193.58.2.23) **Headquarters** Encryption type (e.g. 3DES with CBC) Router w/IPv4 **Encryption & authentication keys** and IPsec 200.168.1.100 172.16.1/24 Integrity check type SA (e.g. HMAC with MD5) ш Branch office Init: Sender and receiver create a 172.16.2/24 network-layer directional logical connection (Security association (SA))

SA state maintained at origin and destination for session management

IPsec datagram

Construct IPsec datagram

Original IPv4 datagram attached with 'Esp trailer'

Original Original IP ESP IP header datagram payload trailer

IPsec datagram

- Original IPv4 datagram attached with 'Esp trailer'
- Encrypt using the algorithm and key specified by SA

Encrypted			
Original	Original IP	ESP	
IP header	datagram payload	trailer	

IPsec datagram

- Original IPv4 datagram attached with 'Esp trailer'
- Encrypt using the algorithm and key specified by SA
- Append ESP header and create MAC over whole enchilada using algorithm and key specified in SA

"Enchilada" autehticated				
	Encrypted			
ESP header	Original IP header	Original IP datagram payload	ESP trailer	

IPsec datagram

- Original IPv4 datagram attached with 'Esp trailer'
- Encrypt using the algorithm and key specified by SA
- Append ESP header and create MAC over whole enchilada using algorithm and key specified in SA
- create new IP header

	"Enchilada" autehticated				
		Encrypted			
new IP header	ESP header	Original IP header	Original IP datagram payload	ESP trailer	ESP MAC

IPsec datagram

- Original IPv4 datagram attached with 'Esp trailer'
- Encrypt using the algorithm and key specified by SA
- 3 Append ESP header and create MAC over whole enchilada using algorithm and key specified in SA
- create new IP header

IPsec datagram

- Original IPv4 datagram attached with 'Esp trailer'
- Encrypt using the algorithm and key specified by SA
- Append ESP header and create MAC over whole enchilada using algorithm and key specified in SA
- create new IP header

Key management in IPsec

IPsec uses Internet Key Exchange (IKE)

Key management in IPsec

IPsec uses Internet Key Exchange (IKE)

init: Each IPsec entity has certificate & public key

Key management in IPsec

IPsec uses Internet Key Exchange (IKE)

init: Each IPsec entity has certificate & public key

First: Bi-directional IKE SA between entities via Diffie-Hellman (no authentication)

Establish master key

Key management in IPsec

IPsec uses Internet Key Exchange (IKE)

init: Each IPsec entity has certificate & public key

First: Bi-directional IKE SA between entities via Diffie-Hellman (no authentication)

Establish master key

Encrypted: Sign messages to authenticate (invisible to eavesdropper)

Key management in IPsec

IPsec uses Internet Key Exchange (IKE)

init: Each IPsec entity has certificate & public key

First: Bi-directional IKE SA between entities via Diffie-Hellman (no authentication)

Establish master key

Encrypted: Sign messages to authenticate (invisible to eavesdropper)

Compute: IPsec SA keys from master secret

Key management in IPsec

IPsec uses Internet Key Exchange (IKE)

init: Each IPsec entity has certificate & public key

First: Bi-directional IKE SA between entities via Diffie-Hellman (no authentication)

Establish master key

Encrypted: Sign messages to authenticate (invisible to eavesdropper)

Compute: IPsec SA keys from master secret

Negotiate: IPsec encryption and authentication algorithms

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

Bob modulus p and base g

Alice modulus p and base g

Diffie-Hellman Key Exchange

Bob modulus p and base $g \leftarrow publicly agree <math>\longrightarrow$ Alice modulus p and base g

Diffie-Hellman Key Exchange

Bob modulus p and base $g \leftarrow publicly agree <math>p$ Alice modulus p and base g Bob choose secret p Alice

Diffie-Hellman Key Exchange

Bob modulus p and base g $\stackrel{\text{publicly agree}}{\stackrel{\text{Send } B = g^b \mod p}}$ Alice modulus p and base g

Diffie-Hellman Key Exchange

Bob modulus p and base g $\xrightarrow{\text{publicly agree}}$ Alice modulus p and base gBob choose secret b $\xrightarrow{\text{Send } B = g^b \mod p}$ Alice
Bob Alice choose secret a

Diffie-Hellman Key Exchange

Bob modulus p and base $g \leftarrow$	publicly agree	\longrightarrow Alice modulus p and base g
,	Send $B = g^b \mod p$	77 moo modalaa p ana baaa g
Bob choose secret b ———	Gend B = g mod p	→ Alice
Bob ← Send /	$A=g^a \mod p$	— Alice choose secret a

Diffie-Hellman Key Exchange

Bob compute:

$$s = A^b \mod p$$

= $g^{ab} \mod p$

Alice compute:

$$egin{array}{lll} s&=&B^a\mod p\ &=&g^{ab}\mod p \end{array}$$

Diffie-Hellman Key Exchange

Bob modulus
$$p$$
 and base g \leftarrow publicly agree \rightarrow Alice modulus p and base g Bob choose secret b \rightarrow Alice p Alice p Alice p Alice choose secret p Alice p Alice p Alice choose secret p p Alice p Alic

Bob compute:

$$s = A^b \mod p$$

= $g^{ab} \mod p$

$$egin{array}{lll} s & = & B^a \mod p \ & = & g^{ab} \mod p \end{array}$$

Recap-slam (15 min)

Recap-Slam

Group A (Web of Trust):

Group B (SSL handshake):

Preparation 5 minutes

Presentation Group A/B 5+5 minutes

Part II (20 min)

Firewalls and Intrusion Detection Systems

Isolates local network from the Internet

- all traffic passes through the firewall
- all non-authorized traffic is dropped
- firewall shall be immune to penetration

Isolates local network from the Internet

- all traffic passes through the firewall
- all non-authorized traffic is dropped
- firewall shall be immune to penetration

Three categories of firewalls:

- Packet filters
- Stateful filters
- Application gateways

Packet filters

Gateway router

- examines each datagram in isolations
- administrator-specific rules for pass or drop

Packet filters

Gateway router

- examines each datagram in isolations
- administrator-specific rules for pass or drop

Filtering decisions based on (e.g.):

- IP source or destination address
- Protocol type in IP datagram field (TCP, UDP, ICMP, OSPF, ...)
- TCP/UDP source and destination port
- TCP flag bits: SYN, ACK, ...
- ICMP message type

Packet filters

Gateway router

- examines each datagram in isolations
- administrator-specific rules for pass or drop

Policy	firewall setting
No outside web	Drop outgoing packets to
address	any IP adr, port 80
No incoming TCP	Drop TCP SYN packets
Resilience against	Drop ICMP ping pkts
smurf DoS attack	to broadcast adr (e.g.
	130.207.255.255)
Prevent network	Drop all outgoing ICMP
traceroute	TTL expired traffic

Stateful filters

 Track all ongoing TCP traffic in a connection table

Stateful filters

Track all ongoing TCP traffic in a connection table

Policy	firewall setting
No outside web	Drop outgoing packets to
address	any IP adr, port 80
No incoming TCP	Drop TCP SYN packets
Resilience against	Drop ICMP ping pkts
smurf DoS attack	to broadcast adr (e.g. 130.207.255.255)
Prevent network traceroute	Drop all outgoing ICMP TTL expired traffic
liaceroute	TTE expired traine

In stateless filter example, packets with ACK=1 and source port 80 get through the filter and could be used to crash local systems with malformed ACK packets

Application gateways

allow application specific rules for selected users

Application gateways

allow application specific rules for selected users

An application gateway...

- make policy ecitions based on application data
- take decisions beyond IP/TCP/UDP headers
- is an application-specific server through which all application data must pass
- performs user authorization

Application gateways

allow application specific rules for selected users

An application gateway...

- make policy ecitions based on application data
- take decisions beyond IP/TCP/UDP headers
- is an application-specific server through which all application data must pass
- performs user authorization

performance penalty since all traffic passes through application gateway

Intrusion detection systems

For many attack types, deep packet inspection is needed

→ Look beyond header fields and into actual application data carried by packets

Intrusion detection systems

For many attack types, deep packet inspection is needed

→ Look beyond header fields and into actual application data carried by packets

IDSs detect wide range of attacks

- network mapping
- port scans
- TCP stack scans
- DoS bandwidth-flooding attacks
- Worms and viruses
- OS/application vulnerability attacks

Intrusion detection systems

For many attack types, deep packet inspection is needed

→ Look beyond header fields and into actual application data carried by packets

IDSs detect wide range of attacks

- network mapping
- port scans
- TCP stack scans
- DoS bandwidth-flooding attacks
- Worms and viruses
- OS/application vulnerability attacks

IDS systems are either signature-based or anomaly-based

Problem statement

Problem statement

Problem statement

Problem statement

Choice of good values for ε

Using crossvalidation and testing sets, calculate

Precision/Recall

F₁-score

. . .

Non-Gaussian features

In anomaly detection, we have so far assumed Gaussian distributed features.

Non-Gaussian features

In anomaly detection, we have so far assumed Gaussian distributed features.

→ What if the feature distribution is not Gaussian?

Generate new features with a more Gaussian-like distribution

Non-Gaussian features

Possible operations on features

$$X_{\text{new}} = \log(X)$$
 $X_{\text{new}} = \sqrt{X}$
 $X_{\text{new}} = X^{\frac{1}{3}}$
 $X_{\text{new}} = \log(X + K)$
:

Multivariate Gaussian Distribution

 Note that there are cases in which the anomaly looks perfectly normal when considering each dimension separately

Multivariate Gaussian Distribution

- Note that there are cases in which the anomaly looks perfectly normal when considering each dimension separately
- ightarrow The consideration of multivariate Gaussian distributions might help to to detect such anomalies.

Video: Future perspectives (5 min)

R. Rivest, W. Diffie, A. Shamir, M. Marlinspike

Hands-on group work (10 min)

Exercises, feedback and Q&A

Hands-on group work

- Additional pracical guidance
- Some hints on the exercises
- Q&A

Questions?

Stephan Sigg stephan.sigg@aalto.fi

Tahmid Quddus tahmid.quddus@aalto.fi

Jesús Ly Ponce jesus.ly@aalto.fi

Literature

- J.F. Kurose, K.W. Ross: Computer Networking: A Top-Down approach (7th edition), Pearson, 2016.
- J.F. Kurose, K.W. Ross: Computer Networking: A Top-Down approach (6th edition), Addison-Wesley, 2012.

