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Topics of the previous lecture

Concepts related to mixers
”mixing” = multiplication in time-domain = frequency shift in frequency domain
Conversion gain, SSB / DSB NF,  IIP2 / IIP3,  ICP, isolation

Active mixers
Cascode amplifier

Active mixer
Single-balanced mixer

Double-balanced mixer
Gilbert cell mixer

Passive mixers
Voltage-mode passive mixer

Current-mode passive mixer
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Frequency Synthesizers (SX)

• System level & concepts
• SX principles

• Phase-locked loop
• ”theory” / CP-PLL  / ADPLL

• Oscillators
• Ring & LC

• Frequency dividers
• Quadrature generation

Exercises & Homework
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SX Requirements

LO

fLO

phase noise

spurious tones

harmonics
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SX Requirements

• Frequency span  --- cover the required bandwidth + margin for PVT
• Channel spacing & settling time
• Phase noise
• IQ-generation  --- Amplitude and phase imbalance (IRR)
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Impact of Phase Noise

LO
Interferer

signal

    Down-
Conversion

Q

I

Phase noise impacts
IQ-constellationReciprocal mixing

In TX, phase noise causes out-of-band spurious emission.
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Impact of Phase Noise

Phase noise requirement depends on:
• Channel spacing
• Modulation method (eg. compare QAM-16 vs. QAM-256)
• Required sensitivity and selectivity
• Specified environment (”hostile” / ”friendly”)
• TX: emission mask

LO
Interferer

signal
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Conversion

Q

I

Phase noise impacts
IQ-constellationReciprocal mixing

In TX, phase noise causes out-of-band spurious emission.
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Phase Noise Specifications

System Band
[MHz]

Ch. spacing
[kHz]

N/C
[dBc/Hz]@kHz

norm-N/C*
[dBc/Hz]

IS54 824-849 30 -115@60 -132

GSM 880-915 200 -141@3000 -125

DECT 1880-1900 1728 -97@1800 -91

WCDMA 1920-1980 5000 -129@8000 -111

WLAN (b) 2400-2483.5 22000 -103@1000 -105

BlueTooth 2400-2483.5 1000 -109@1000 -111

GPS 1575.42 - -95@1000 -93

DOCSIS** 47-862 6000 -82@10 -100

DVB-S 10700-12750 fixed LO1 -95@100 -131

* Normalized to 2GHz and 1MHz, N/C~(fo/fm)2 **data over cable-TV

Phase noise specification for SX given either by
• N/C at certain offset, e.g  N/C@1 MHz < -120 dBc/Hz
• Integrated N/C profileà can be then converted to jitter spec
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IQ Imbalance

LNA
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LO_Q

LNA

LO_I

LO_Q

A
     D

A
     D

Hartley Receiver DCR

• LO signals (I) and (Q):  equal amplitude (A) and 90-degree phase shift (f)
• DA  and Df results in imperfect image rejection or reduced SNR for DRC
• Every signal path element contribute to IRR, but usually LO imperfections dominate
• Image-Reject Ratio (IRR) is a measure of LO signal imbalance
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• Typically  DCRs need IRR > 30 dBà Abal < 0.5 dB and ∆θ < 4°
• LO chain often includes limiting amplifiersà phase error remains a challenge
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Frequency Synthesis Methods

1. Direct analog synthesis

2. Direct digital synthesis

3. Indirect digital synthesis

4. Indirect analog synthesis

”DDS”

”PLL”

”DAS”
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Direct Analog Synthesis (DAS)

Main problem for RF IC implementation: good filters can not be integrated.

DAS is in use e.g. in measurement instruments – High perf, high price
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• Filters are filter banks and/or tunable filters
• Amplifiers not drawn
• Chain may include dividers as well

f1
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f3
f4
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Direct Analog Synthesis
At RF IC context we may use simplified versions of DAS.

”Manipulate a frequency tone with basic mathematical operators”
- addition à mixer
- substraction à mixer
- division à frequency divider
- multiplication à frequency doubler / tripler

Band 1

 VCOFractional-N
      PLL

Band 2

Band 3

Band 4

Band 5

  / N1

  / N2

  / N3    N4
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Direct Digital Synthesis (DDS)

Problems:
needs a high-speed D/A
needs fclock > 3* fout

DDS is used in base stations and LF radios (e.g. military)
Enables very complex modulations (military)

Phase
Accumulator

clock

data ROM D/A

time-sampled
phase

time-sampled
amplitude

analog
signal
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Indirect FS -- Phase-Locked Loop

Basic idea is to lock the oscillator into the incoming signal using a feedback loop.
Compare to: feedback amplifier analysis in electronics

feedback systems in control theory and automation

 VCO PDfRef fout

 VCO PDfRef fout

1/N
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Some Books on PLL’s

• Many basic text books on RF/analog IC electronics include a chapter on PLLs
– Razavi: RF Microelectronics,
– Lee: The Design of CMOS RF IC,
– Grebene: Bipolar and MOS Analog IC Desing, etc.

• U. Rohde: many books on PLL’s, not RF IC oriented
• F. Gardner: Phaselock Techniques
• R. Best: Phase-Locked Loops: design, simulation and applications
• J. Crawford: Frequency Synthesizer Design Handbook
• D. Wolaver: Phase-Locked Loop Circuit Design
• C. Vaucher: Architectures for RF Frequency Synthesizers
• D. Banerjee: PLL Performance, Simulation and Design (wireless.national.com)
• ... and many more J
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PLL

VCO
spur

C/N

log w

PLL performs a high-pass filtering for the phase-errorà flat in-band noise

phase
noise

Typical Results of Linear Analysis
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Integer-N PLL:
• reference frequency = channel spacing
• if N is very large

• stability requires loop-BW < fref/10 à loop-BW small
à long settling time & poor phase noise reduction at high offset

• ref. source & PD noise is multiplied by N
• Recall: GSM1800 ch. spacing=200 kHz, N~10000

Fractional-N Concept
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Integer-N PLL:
• reference frequency = channel spacing
• if N is very large

• stability requires loop-BW < fref/10 à loop-BW small
à long settling time & poor phase noise reduction at high offset

• ref. source & PD noise is multiplied by N
• Recall: GSM1800 ch. spacing=200 kHz, N~10000

Basic integer-N PLL is not good for small channel-spaced systems
Þ Improvments on PLL architecture (mixers in loop, dual-loop, frac-N PLL)
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• With the aid of dual-modulus divider division ratio can be set to N...N+1
Example: TA/(TA+TB)=90%, TB/(TA+TB)=10% and N=100 => Neff » 100.1

à Frac-N PLL provides small channel step and still large loop-BW.

• Main problem : ”fractional spurs”
àCan be partly compensated by randomizing the timing

and using SD noise shaping.
(for details, Razavi presents an easy-to-read presentation in RF Microelectronics)

• Frac-N PLL requires more hardware and suffers from high spurios content
and increased noise level compared to int-N PLL.
à use only when integer-N is not feasible.

Fractional-N Concept
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Charge-Pump PLL

PFD

1/N1

fOUT

VCO

1/N2

Loop Filter
Phase-Frequency

Detector

Charge Pump

fREF

UP

DW
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Impact of Technology Evolution
Recall our earlier paradigm changes, e.g.
• GaAs MESFETà Si Bipolarà CMOS
• Superheterodyne receiverà DCR
• Monolithic capacitors:  vertical fieldà lateral field
• Gilbert cell mixerà current-mode passive mixer
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Impact of Technology Evolution

“Simple PD” (mixer)
PLL

Charge-pump
PLL

All-digital
PLL

1990 2000 2010

Recall our earlier paradigm changes, e.g.
• GaAs MESFETà Si Bipolarà CMOS
• Superheterodyne receiverà DCR
• Monolithic capacitors:  vertical fieldà lateral field
• Gilbert cell mixerà current-mode passive mixer

“In a highly-scaled CMOS technology, time-domain resolution of a digital
signal edge transition is superior to voltage resolution of analog signals”

R. Bogdan Staszewski
Manager of

TI’s DRP group
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All-Digital PLL

TDC

1/N

fOUT

DCO
Loop
Filter Dither

fREF

FCW ∑ Tune

• Frequency control word (FCW) defines the target frequency
• Time-to-Digital converter (TDC) describes the output frequency with a digital word
• Error signal (digital) is filtered in the digital loop filter
• Digital-controlled oscillator (DCO) is tuned accordingly
• Dithering (compare to frac-N principle) is used to achieve fine frequency step
• Prescaler used to lower fout (only if needed!) (65-nm CMOS: TDC fmax~1.7 GHz)
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Oscillators

Oscillator is an autonomous device which generates a waveform
à It converts power from DC to  ”AC”

Variable frequency oscillator converts a control signal into frequency
à information is converted from one mode to another
• VCO – voltage-controlled oscillator
• ICO – current-controlled oscillator
• DCO – digitally controlled oscillator

Oscillator waveform can be
• Sinusoidal  : low level of higher harmonics
• Square : high level of higher harmonics, ”clock signal”

• ramp or triangular is used at LF control circuits
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Oscillator Classification

oscillation mode oscillator structure

• Stable (no oscillation)
• Harmonic (sinusoidal)
• Relaxation
• Chaotic

• Phase shift (RC)
• Gm-C
• Crystal
• Multivibrator

• Ring
• LC

No correlation !!
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Oscillator Terms and Figures of Merit
• Tuning Range : ratio of maximum and minimum oscillation frequency
• VCO gain (KVCO) and its deviation (linearity)
• Output power (preferably constant)
• supply voltage / current consumption / power efficiency
• Distortion in ”sinusoidal” oscillators
• Temperature stability (Dfreq/DT)
• Pushing (PSRR) (Dfreq/Dsupply)
• Pulling (load) : Frequency shift caused by load impedace variation
• Pulling (injection) : Frequency shift caused by external disturbance
• Phase Noise / Jitter
• Die Area (IC implementation) / Component count (discreate circuits)

nconsumptioPowerNoisePhase
RangeTuningFOM

*
µ
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Ring Oscillator
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Ring Oscillator

0 1 0 1
1 0 1 0
0 1 0 1 Real implementation is differential and

simple cross-coupling creates proper fb.

+ can be transistor-only circuit
à small area

+ Easy to tune, large tuning range

M power cons. is relative to freq.
(although follows technology-nodes)
Mmoderate (poor) phase noise
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LC Oscillator

Is negative resistor a plausible device at all?

Gloss Gneg
0

1

£-

=

negloss

osc

GG
LC

w
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LC Oscillator

Is negative resistor a plausible device at all?

Transconductor in unity feedback Gunn diode
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Negative Conductance : Unity Feedback
(most of modern RFIC VCOs use these)

• Cross-coupled pair (CCP) :  NMOS / PMOS / CMOS
• Biasing : top / bottom / none
• Advanced techniques like noise filtering

à Really many different topologies exist
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NMOS CCP Biasing
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CMOS Cross-Coupled Pair
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Negative conductance : reactive feedback
Zin
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Negative conductance : reactive feedback
Zin
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Add a coilà oscillator
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Negative conductance : reactive feedback
Zin
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Some Classical Oscillators
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Add a coilà oscillator
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Linear Analysis Methods
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1) Loop-Gain

2) Negative-Resistance

3) Nodal Equation
See details:
L. Larson : RF and microwave circuit
design for wireless communications
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Example: Common-Drain Colpitts
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Oscillator Phase Noise
Intuitive approach : ”noise mixing”
• Oscillator is a nonlinear circuit
• oscillation swing is ”internal LO”
• noise (int. & ext.) is mixed into carrier
• fb-loop performs filtering

Intuitive approach II : ”Frequency modulation”
• Oscillator is a VCO & ICO
• noise is modulating the oscillator frequency

noise
  w

n

"LO"

VCO
 ICO

w
n- wn

[ ]ttKVAtAtv mm
m

VCOm
osc )cos()cos(

2
cos)( 000 wwww

w
w --+

××
+»

Low phase noise
à Minimize nonlinearity
à Minimize KVCO and other sensitivities

Narrowband FM
approximation
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Oscillator Phase Noise
Consider ideal parallel LCR-type oscillator with noiseless Gneg.

There are losses in the resonator and corresponding noise source is

Impedance of the LC-tank

Tank quality factor

We have

Noise voltage is

This is both amplitude and phase noise. Oscillator performs amplitude
clippingà no amplitude noise. Thus, divide above by two. Also recall

Noise-to-carrier ratio is
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Leeson’s Phase Noise Model
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Heurestical model (based on experiments)
• fc is 1/f-noise cornerà close-in noise
• constant term ”1” is included to

describe the noise floor
• F is for additional noise due to –gm
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noise floor

M fc is not the same as device’s 1/f-corner
M F is difficult to estimate a priori
M Based on linear time-invariant model
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Frequency Dividers

à There is a frequency limit, set by  the limited speed of dynamic logic or increased power
consumption, where static logic becomes superior.
With 65-nm CMOS this limit is in range of 2-3 GHz, in 28-nm at  5-7 GHz.

CVfP ddDC ××= 2

Static logic (SCL = source-coupled logic)
• ”memory” element has continious current
• devices have constant bias (no saturation)
• no speed limitation (as with dyn. logic)
• power – frequency dependency weaker
• differential signals (dyn. logic single-ended)
à Better immunity to noise, glitches etc.

Dynamic logic:
• ”memory” element needs to be refreshed
• transistors operate as switches
• many logic families
• on/off switchingà limited speed
• power consumption is related to speed :

• speed scales with the technology
• power consumption scales with the technology

From RF designer’s point of view there are two types of logic: dynamic & static
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SCL D-flipflop divider

• D-flipflop in unity feedback is a divide-by-two circuit
• D-flipflop consists of two D-latches

D-latch
D                 Q

DX            QX
        CLK

D-latch
D                 Q

DX            QX
        CLK

DFFfin

fout

Q

CLK

D

• resistor
• PMOS
• inductor

TRACK HOLD
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Divider Chains

DFF DFF

in

out

modulus
   ctrl

DFF DFF

in

modulus
   ctrl

Div-2/3 Div-3/4

Asynchronous chain
Divide by 2N

Johnson counter
Divide by 2N

Dual-modulus
dividers

D    Q

  DFF

 QX
D    Q

  DFF

 QX
D    Q

  DFF

 QX

D    Q

  DFF

 QX
D    Q

  DFF

 QX
D    Q

  DFF

 QX
D    Q

  DFF

 QX

• Power consumption
lower after each division

• Higher noise (jitter)

• Each DFF runs at fin
àhigher power cons.
• smaller noise (jitter)
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IQ Generation

0
   90°

A
    D

A
    D

Pre-
select

Channel
 select

LO

 I

 Q

Four LO signals needed:
0° / 90° / 180° / 270°

IQ amplitude and phase
balance (IRR) very important.

1. RC phase shiftersà polyphase RC filter
2. Divide-by-two circuit
3. Quadrature oscillators
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RC Phase Shifters
vin

vinI Q
Qp  ( 90 deg)

Im   ( 180 deg)

Qm ( 270 deg)

Ip   ( 0 deg)

constant IQ phase balance constant IQ amplitude balance

• Narrow bandwidth
• Sensitive to process spread
• Post-tuning possible
• Clipping amplifier helps

RC-CR network
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RC Phase Shifters
vin

vinI Q
Qp  ( 90 deg)

Im   ( 180 deg)

Qm ( 270 deg)

Ip   ( 0 deg)

constant IQ phase balance constant IQ amplitude balance

• Narrow bandwidth
• Sensitive to process spread
• Post-tuning possible
• Clipping amplifier helps

RC-CR network
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Polyphase RC filter
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Divide-by-two IQ Generation

D-latch
D                 Q

DX            QX
        CLK

D-latch
D                 Q

DX            QX
        CLK

DFFIN

I Q

• Wide bandwidth
• Compact size, easy to design well
• IRR limited by latch matching
• Requires double-freq signal
• Non-perfect input signal:

• Amplitude error => phase error
• Phase error attenuates a bit
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Divide-by-two IQ Generation

D-latch
D                 Q

DX            QX
        CLK

D-latch
D                 Q

DX            QX
        CLK

DFFIN

I Q

• Wide bandwidth
• Compact size, easy to design well
• IRR limited by latch matching
• Requires double-freq signal
• Non-perfect input signal:

• Amplitude error => phase error
• Phase error attenuates a bit
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Quadrature Oscillators
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• Quadrature coupling results
in increased phase noise

• Large die area
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Summary

• SX requirements, impact of phase noise, IQ imbalance (IRR)
• DAS /  DDS  /  PLL
• CP-PLL
• ADPLL

• Oscillators: Ring & LC
• LC-oscillators: unity feedback / reactive feedback
• Phase noise

• Frequency Dividers: dynamic ”CMOS” / static ”SCL”
• IQ signal generation: RC polyphase / Div-2 / quadrature osc.


