

Topics of the previous lecture

Concepts related to mixers

"mixing" = multiplication in time-domain = frequency shift in frequency domain Conversion gain, SSB / DSB NF, IIP2 / IIP3, ICP, isolation

Active mixers

Cascode amplifier

Active mixer

Single-balanced mixer

Double-balanced mixer

Gilbert cell mixer

Passive mixers

Voltage-mode passive mixer

Current-mode passive mixer

Frequency Synthesizers (SX)

- System level & concepts
- SX principles
- Phase-locked loop
 - "theory" / CP-PLL / ADPLL

Break

- Frequency dividers
- Quadrature generation

Break

Exercises & Homework

SX Requirements

SX Requirements

- Frequency span --- cover the required bandwidth + margin for PVT
- Channel spacing & settling time
- Phase noise
- IQ-generation --- Amplitude and phase imbalance (IRR)

Impact of Phase Noise

Reciprocal mixing

Phase noise impacts IQ-constellation

In TX, phase noise causes out-of-band spurious emission.

Impact of Phase Noise

Reciprocal mixing

Phase noise impacts IQ-constellation

In TX, phase noise causes out-of-band spurious emission.

Phase noise requirement depends on:

- Channel spacing
- Modulation method (eg. compare QAM-16 vs. QAM-256)
- Required sensitivity and selectivity
- Specified environment ("hostile" / "friendly")
- TX: emission mask

Phase Noise Specifications

Phase noise specification for SX given either by

- N/C at certain offset, e.g N/C@1 MHz < -120 dBc/Hz
- Integrated N/C profile → can be then converted to jitter spec

System	Band [MHz]	Ch. spacing [kHz]	N/C [dBc/Hz]@kHz	norm-N/C* [dBc/Hz]
IS54	824-849	30	-115@60	-132
GSM	880-915	200	-141@3000	-125
DECT	1880-1900	1728	-97@1800	-91
WCDMA	1920-1980	5000	-129@8000	-111
WLAN (b)	2400-2483.5	22000	-103@1000	-105
BlueTooth	2400-2483.5	1000	-109@1000	-111
GPS	1575.42	-	-95@1000	-93
DOCSIS**	47-862	6000	-82@10	-100
DVB-S	10700-12750	fixed LO1	-95@100	-131
* Normalized to 2GHz and 1MHz, N/C~(fo/fm) ² **data over cable-TV				

IQ Imbalance

- LO signals (I) and (Q): equal amplitude (A) and 90-degree phase shift (φ)
- ΔA and $\Delta \phi$ results in imperfect image rejection or reduced SNR for DRC
- Every signal path element contribute to IRR, but usually LO imperfections dominate
- Image-Reject Ratio (IRR) is a measure of LO signal imbalance

$$IRR = \frac{1 + 2A_{bal}\cos\Delta\theta + A_{bal}^2}{1 - 2A_{bal}\cos\Delta\theta + A_{bal}^2}$$

- Typically DCRs need IRR > 30 dB \rightarrow A_{bal} < 0.5 dB and $\Delta\theta$ < 4°
- LO chain often includes limiting amplifiers → phase error remains a challenge

Frequency Synthesis Methods

1. Direct analog synthesis

"DAS"

2. Direct digital synthesis

3. Indirect digital synthesis

4. Indirect analog synthesis

Direct Analog Synthesis (DAS)

- Filters are filter banks and/or tunable filters
- Amplifiers not drawn
- Chain may include dividers as well

Main problem for RF IC implementation: good filters can not be integrated.

DAS is in use e.g. in measurement instruments – High perf, high price

Direct Analog Synthesis

At RF IC context we may use simplified versions of DAS.

"Manipulate a frequency tone with basic mathematical operators"

- addition → mixer
- substraction → mixer
- division → frequency divider
- multiplication → frequency doubler / tripler

Direct Digital Synthesis (DDS)

Problems:

needs a high-speed D/A needs $f_{clock} > 3^* f_{out}$

DDS is used in base stations and LF radios (e.g. military) Enables very complex modulations (military)

Indirect FS -- Phase-Locked Loop

Basic idea is to lock the oscillator into the incoming signal using a feedback loop.

Compare to: feedback amplifier analysis in electronics feedback systems in control theory and automation

Some Books on PLL's

- Many basic text books on RF/analog IC electronics include a chapter on PLLs
 - Razavi: RF Microelectronics,
 - Lee: The Design of CMOS RF IC,
 - Grebene: Bipolar and MOS Analog IC Desing, etc.
- U. Rohde: many books on PLL's, not RF IC oriented
- F. Gardner: Phaselock Techniques
- R. Best: Phase-Locked Loops: design, simulation and applications
- J. Crawford: Frequency Synthesizer Design Handbook
- D. Wolaver: Phase-Locked Loop Circuit Design
- C. Vaucher: Architectures for RF Frequency Synthesizers
- D. Banerjee: PLL Performance, Simulation and Design (wireless.national.com)
- ... and many more ©

Typical Results of Linear Analysis

PLL performs a high-pass filtering for the phase-error → flat in-band noise

Fractional-N Concept

Integer-N PLL:

- reference frequency = channel spacing
- if N is very large
 - stability requires loop-BW < f_{ref}/10 → loop-BW small
 - → long settling time & poor phase noise reduction at high offset
 - ref. source & PD noise is multiplied by N
- Recall: GSM1800 ch. spacing=200 kHz, N~10000

Fractional-N Concept

Integer-N PLL:

- reference frequency = channel spacing
- if N is very large
 - stability requires loop-BW < f_{ref}/10 → loop-BW small
 - → long settling time & poor phase noise reduction at high offset
 - ref. source & PD noise is multiplied by N
- Recall: GSM1800 ch. spacing=200 kHz, N~10000

Basic integer-N PLL is not good for small channel-spaced systems

⇒ Improvments on PLL architecture (mixers in loop, dual-loop, frac-N PLL)

Dual-modulus divider

$$f_{in}$$
 T_A
 T_B
 T_B

$$\frac{T_A}{T_A + T_B} \cdot \frac{f_{in}}{N} + \frac{T_B}{T_A + T_B} \cdot \frac{f_{in}}{N+1} = f_{out}$$

$$\frac{f_{out}}{f_{in}} = \frac{1}{N_{eff}} = \frac{1}{\frac{T_A + T_B}{T_A} \cdot N} + \frac{1}{\frac{T_A + T_B}{T_B} \cdot (N+1)}$$

Fractional-N Concept

- With the aid of dual-modulus divider division ratio can be set to N...N+1 Example: $T_A/(T_A+T_B)=90\%$, $T_B/(T_A+T_B)=10\%$ and N=100 => $N_{eff}\approx 100.1$
- → Frac-N PLL provides small channel step and still large loop-BW.
- Main problem : "fractional spurs"
 - \rightarrow Can be partly compensated by randomizing the timing and using $\Sigma\Delta$ noise shaping.

(for details, Razavi presents an easy-to-read presentation in *RF Microelectronics*)

- Frac-N PLL requires more hardware and suffers from high spurios content and increased noise level compared to int-N PLL.
 - → use only when integer-N is not feasible.

Charge-Pump PLL

Impact of Technology Evolution

Recall our earlier paradigm changes, e.g.

- GaAs MESFET → Si Bipolar → CMOS
- Superheterodyne receiver → DCR
- Monolithic capacitors: vertical field → lateral field
- Gilbert cell mixer → current-mode passive mixer

Impact of Technology Evolution

Recall our earlier paradigm changes, e.g.

- GaAs MESFET → Si Bipolar → CMOS
- Superheterodyne receiver → DCR
- Monolithic capacitors: vertical field → lateral field
- Gilbert cell mixer → current-mode passive mixer

"In a highly-scaled CMOS technology, time-domain resolution of a digital signal edge transition is superior to voltage resolution of analog signals"

R. Bogdan Staszewski Manager of TI's DRP group

All-Digital PLL

- Frequency control word (FCW) defines the target frequency
- Time-to-Digital converter (TDC) describes the output frequency with a digital word
- Error signal (digital) is filtered in the digital loop filter
- Digital-controlled oscillator (DCO) is tuned accordingly
- Dithering (compare to frac-N principle) is used to achieve fine frequency step
- Prescaler used to lower f_{out} (only if needed!) (65-nm CMOS: TDC f_{max}~1.7 GHz)

Oscillators

Oscillator is an autonomous device which generates a waveform → It converts power from DC to "AC"

Variable frequency oscillator converts a control signal into frequency

- → information is converted from one mode to another
- VCO voltage-controlled oscillator
- ICO current-controlled oscillator
- DCO digitally controlled oscillator

Oscillator waveform can be

- Sinusoidal: low level of higher harmonics
- Square: high level of higher harmonics, "clock signal"
- ramp or triangular is used at LF control circuits

Oscillator Classification

oscillation mode

- Stable (no oscillation)
- Harmonic (sinusoidal)
- Relaxation
- Chaotic

No correlation!!

oscillator structure

- Phase shift (RC)
- G_m-C
- Crystal
- Multivibrator
- Ring
- LC

Oscillator Terms and Figures of Merit

- Tuning Range: ratio of maximum and minimum oscillation frequency
- VCO gain (K_{VCO}) and its deviation (linearity)
- Output power (preferably constant)
- supply voltage / current consumption / power efficiency
- Distortion in "sinusoidal" oscillators
- Temperature stability (∆freq/∆T)
- Pushing (PSRR) (∆freq/∆supply)
- Pulling (load): Frequency shift caused by load impedace variation
- Pulling (injection): Frequency shift caused by external disturbance
- Phase Noise / Jitter
- Die Area (IC implementation) / Component count (discreate circuits)

$$FOM \propto \frac{Tuning\ Range}{Phase\ Noise * Power\ consumptio\ n}$$

Ring Oscillator

$$f_{osc} = \frac{1}{2\tau N}$$

$$au \propto \frac{C_{load}}{I} \; \Rightarrow \; f_{osc} \propto \frac{I}{C_{load}N}$$

Ring Oscillator

$$f_{osc} = \frac{1}{2\tau N}$$

$$au \propto \frac{C_{load}}{I} \; \Rightarrow \; f_{osc} \propto \frac{I}{C_{load}N}$$

Real implementation is differential and simple cross-coupling creates proper fb.

- + can be transistor-only circuit
 - → small area
- + Easy to tune, large tuning range
- ◆ power cons. is relative to freq.(although follows technology-nodes)

LC Oscillator

Is negative resistor a plausible device at all?

LC Oscillator

$$\omega_{osc} = \sqrt{\frac{1}{LC}}$$

$$G_{loss} - G_{neg} \le 0$$

Is negative resistor a plausible device at all?

Transconductor in unity feedback

Negative Conductance : Unity Feedback

(most of modern RFIC VCOs use these)

- Cross-coupled pair (CCP): NMOS / PMOS / CMOS
- Biasing: top/bottom/none
- Advanced techniques like noise filtering
 - → Really many different topologies exist

NMOS CCP Biasing

CMOS Cross-Coupled Pair

Negative conductance : reactive feedback

nmos = g_m and V_{bias} -node is signal ground

$$Z_{in} = -\frac{g_m}{\omega^2 C^2} + \frac{1}{j\omega \frac{C}{2}}$$

Negative conductance : reactive feedback

nmos = g_m and V_{bias} -node is signal ground

$$Z_{in} = -\frac{g_m}{\omega^2 C^2} + \frac{1}{j\omega\frac{C}{2}} + \frac{(R_{coil} + j\omega L)}{\text{Add a coil } \rightarrow \text{ oscillator}}$$

Negative conductance : reactive feedback

nmos = g_m and V_{bias} -node is signal ground

$$Z_{in} = -\frac{g_m}{\omega^2 C^2} + \frac{1}{j\omega^{\frac{C}{2}}} + (R_{coil} + j\omega L)$$

Add a coil → oscillator

MILLER

Some Classical Oscillators

CLAPP

School of Electrical Engineering

Linear Analysis Methods

1) Loop-Gain

$$|A(j\omega_{osc})B(j\omega_{osc})| \ge 1$$

 $\angle A(j\omega_{osc})B(j\omega_{osc}) = 180^{\circ}$

2) Negative-Resistance

$$R = R_G(\omega_0) + R_L(\omega_0) \le 0$$
$$X = X_G(\omega_0) + X_L(\omega_0) = 0$$

3) Nodal Equation

See details:

L. Larson: RF and microwave circuit design for wireless communications

$$[Y] \cdot [V] = 0 \implies |Y| = 0 \implies RE\{|Y|\} = 0$$

 $IM\{|Y|\} = 0$

in each case you get two equations one for f_{osc} and second for $-g_m$

Example: Common-Drain Colpitts

$$\begin{vmatrix} \frac{1}{j\omega L} + Y_{in} + j\omega C_1 + G_L & -Y_{in} - j\omega C_1 \\ -Y_{in} - j\omega C_1 - g_m & j\omega (C_1 + C_2) + Y_{in} + \frac{1}{R} + Y_o + g_m \end{vmatrix} = 0$$

$$\omega = \sqrt{\frac{1}{L\frac{C_2(C_1 + C_{in})}{C_1 + C_2 + C_{in}}} + \frac{G_L(\frac{1}{R} + g_o + g_m)}{C_2(C_1 + C_{in})}} \qquad g_m > \frac{C_1 + C_{in}}{C_2} (\frac{1}{R} + g_o) + G_L\left(2 + \frac{C_1 + C_{in}}{C_2} + \frac{C_2}{C_1 + C_{in}}\right)$$

Oscillator Phase Noise

Intuitive approach: "noise mixing"

- Oscillator is a nonlinear circuit
- oscillation swing is "internal LO"
- noise (int. & ext.) is mixed into carrier
- fb-loop performs filtering

Intuitive approach II: "Frequency modulation"

- Oscillator is a VCO & ICO
- noise is modulating the oscillator frequency

Narrowband FM approximation

$$v_{osc}(t) \approx A\cos\omega_0 t + \frac{A \cdot V_m \cdot K_{VCO}}{2\omega_m} \left[\cos(\omega_0 + \omega_m)t - \cos(\omega_0 - \omega_m)t\right]$$

Low phase noise

- → Minimize nonlinearity
- → Minimize K_{VCO} and other sensitivities

Oscillator Phase Noise

Consider ideal parallel LCR-type oscillator with noiseless G_{nea}.

There are losses in the resonator and corresponding noise source is

$$\frac{\overline{i_n^2}}{\Delta f} = 4kTG$$

Impedance of the LC-tank

$$Z(\omega_0 + \Delta\omega) \approx -j \frac{\omega_0 L}{2 \frac{\Delta\omega}{\omega_0}}$$

$$Q = \frac{1}{\omega_0 LG} \Rightarrow L = \frac{1}{\omega_0 QG}$$

Tank quality factor

We have

$$\left|Z(\omega_0 + \Delta\omega)\right| \approx \frac{\omega_0}{2\frac{\Delta\omega}{\omega_0}\omega_0 QG} = \frac{1}{2QG}\frac{\omega_0}{\Delta\omega}$$
 e is

Noise voltage is

$$\frac{\overline{v_n^2}}{\Delta f} = \frac{\overline{i_n^2}}{\Delta f} \cdot |Z|^2 = 4kTR \left(\frac{1}{2Q} \frac{\omega_0}{\Delta \omega}\right)^2$$

This is both amplitude and phase noise. Oscillator performs amplitude $v_{sig}^2 = P_{sig} \cdot R$ clipping \rightarrow no amplitude noise. Thus, divide above by two. Also recall

Noise-to-carrier ratio is

$$N/C = \frac{2kT}{P_{sig}} \left(\frac{1}{2Q} \frac{\omega_0}{\Delta \omega} \right)^2$$
 Low phase noise \rightarrow Maximize P_{sig} and Q

Leeson's Phase Noise Model

$$L(\Delta\omega) = 10 \cdot \log \left\{ \frac{2kT \cdot F}{P_{sig}} \left(1 + \left(\frac{1}{2Q} \frac{\omega_0}{\Delta\omega} \right)^2 \right) \cdot \left(1 + \frac{f_c}{\Delta\omega} \right) \right\}$$

Heurestical model (based on experiments)

- f_c is 1/f-noise corner → close-in noise
- constant term "1" is included to describe the noise floor
- F is for additional noise due to –g_m

- f_c is not the same as device's 1/f-corner
- **★** F is difficult to estimate a priori
- ◆ Based on linear time-invariant model

Frequency Dividers

From RF designer's point of view there are two types of logic: dynamic & static

Dynamic logic:

- "memory" element needs to be refreshed
- transistors operate as switches
- many logic families
- on/off switching → limited speed
- power consumption is related to speed :

$$P_{DC} = f \cdot V_{dd}^2 \cdot C$$

- speed scales with the technology
- power consumption scales with the technology

Static logic (SCL = source-coupled logic)

- "memory" element has continious current
- devices have constant bias (no saturation)
- no speed limitation (as with dyn. logic)
- power frequency dependency weaker
- differential signals (dyn. logic single-ended)
- → Better immunity to noise, glitches etc.

- → There is a frequency limit, set by the limited speed of dynamic logic or increased power consumption, where static logic becomes superior.
 - With 65-nm CMOS this limit is in range of 2-3 GHz, in 28-nm at 5-7 GHz.

SCL D-flipflop divider

- D-flipflop in unity feedback is a divide-by-two circuit
- D-flipflop consists of two D-latches

Divider Chains

Asynchronous chain

Divide by 2^N

- Power consumption lower after each division
- Higher noise (jitter)

Johnson counter Divide by 2N

- Each DFF runs at f_{in}
 →higher power cons.
- smaller noise (jitter)

Dual-modulus dividers

IQ Generation

Four LO signals needed: 0° / 90° / 180° / 270°

IQ amplitude and phase balance (IRR) very important.

- 1. RC phase shifters → polyphase RC filter
- 2. Divide-by-two circuit
- 3. Quadrature oscillators

RC Phase Shifters

constant IQ phase balance

constant IQ amplitude balance

RC-CR network

- Narrow bandwidth
- Sensitive to process spread
- Post-tuning possible
- Clipping amplifier helps

RC Phase Shifters

vin Q

RC-CR network

- Narrow bandwidth
- Sensitive to process spread
- Post-tuning possible
- Clipping amplifier helps

constant IQ phase balance

constant IQ amplitude balance

Divide-by-two IQ Generation

- Wide bandwidth
- Compact size, easy to design well
- IRR limited by latch matching
- Requires double-freq signal
- Non-perfect input signal:
 - Amplitude error => phase error
 - Phase error attenuates a bit

Divide-by-two IQ Generation

- Wide bandwidth
- Compact size, easy to design well
- IRR limited by latch matching
- Requires double-freq signal
- Non-perfect input signal:
 - Amplitude error => phase error
 - Phase error attenuates a bit

Quadrature Oscillators

Quadrature Oscillators

- Quadrature coupling results in increased phase noise
- Large die area

Summary

- SX requirements, impact of phase noise, IQ imbalance (IRR)
- DAS / DDS / PLL
- CP-PLL
- ADPLL
- Oscillators: Ring & LC
 - LC-oscillators: unity feedback / reactive feedback
 - Phase noise
- Frequency Dividers: dynamic "CMOS" / static "SCL"
- IQ signal generation: RC polyphase / Div-2 / quadrature osc.