
HTTP/1.1 pipelining vs HTTP2 in-the-clear:
performance comparison

Romuald Corbel
Orange Labs

Lannion, France

romuald.corbel@orange.com

Emile Stephan
Orange Labs

Lannion, France

emile.stephan@orange.com

Nathalie Omnes
Orange Labs

Lannion, France

nathalie.omnes@orange.com

ABSTRACT

The average Web Page size is constantly increasing: it
doubled between January 2012 and January 2015 [1]. In
such a context the transport of the Internet traffic becomes
very challenging. To moderate the impact of the increase of
traffic on end-users’ Quality of Experience (QoE), the
IETF specified the protocol HTTP2, which optimizes the
transfer of the HTTP1 protocol.

In this paper we provide a comparison of HTTP1 and
HTTP2, both in terms of functionalities and in terms of
Page Download Time (PDT). As end-to-end encryption is
not always required, this comparison is provided in-the-
clear. To avoid any bias in the comparison, our
measurements are made with the same hardware, the same
software and the same transport conditions (multiplexing
over a single TCP connection per domain).

Based on our measurement, we show that HTTP2 always
highlights better performances that HTTP1. More precisely,
we observe the HTTP2 PDT remains 15% lower than
HTTP1 PDT as the network delay increases. Furthermore,
we observe that the ratio of HTTP2 PDT to HTTP1 PDT
decreases as the packet loss increases, showing that HTTP2
is more resilient to packet loss than HTTP1.

Keywords

HTTP1, HTTP2, H2C, Apache, Nghttp2, page download
time, average web page, performance

1. INTRODUCTION
The average Web Page size has doubled over the last 3
years [1]. The main part of the increase of traffic is
naturally driven by the increase of the resolution of the
video and the complexity of e-commerce applications. In
addition, there is a hidden part which comes from
optimizations made by web sites [2]. As an example,
domain sharding [3] (content storage in multiple sub-
domains to increase the number of concurrent connections)
increases the throughput available between a browser and a
Web application but adds a lot of connection overhead as it

duplicates headers, cookies, CSS files and JavaScript files
exchanges.

HTTP1 has been designed in 1990 to request HTML pages
from a text-based web browser. Modern Web applications
have stronger requirements in term of interactivity and
must adapt to extremely varying network conditions in
mobile situations. However, while downloading the web
page requires several requests, these requests cannot be
truly parallelized. Even with HTTP/1.1 pipelining the
response to a request n has to wait until the response to the
request n-1 is sent. This is the well-known HTTP head of
line blocking issue.

To overcome this issue, Google experienced a new protocol
named SPDY [4]. The initiative was reused by the IETF to
specify HTTP2. HTTP2 [5, 6] does not change HTTP
semantics. HTTP2 transports HTTP headers and data in
separate frames. HTTP2 headers compression [6] optimizes
headers carrying on-the-wire, solving HTTP headers
repetitions issue. Both HTTP/1.1-pipelining and HTTP2
support multiplexing the requests in the same TCP
connection. In HTTP2, requests and responses are further
numbered. This allows interleaving the responses in
parallel and solves the HTTP head of line blocking issue.

A number of papers have presented the benefits of SPDY
or HTTP2 [7, 8]. Since existing HTTP2 stacks are
implemented over TLS, most of the time these studies
compared HTTP2/TLS with HTTP1/TLS [9]. In this paper
we chose to compare the performance of the protocols
HTTP1 and HTTP2 in-the-clear over TCP. We use the new
Apache module [10] mod_http2 and the Nghttp2 [11] for
this purpose.

Web sites are progressively moving to HTTPS to protect
end-users privacy. In the meantime, they are migrating to
HTTP2 to improve both network performance and end-user
experience. Although the Internet is moving to encryption,
there are relevant use cases where TLS encryption is not
required while HTTP2 is still desirable:

• Servers located behind a reverse proxy terminating
encrypted HTTP2 connections and receiving the

13th International Conference on New Technologies for Distributed Systems (NOTERE 2016)

978-1-5090-3426-0/16/$31.00 ©2016 IEEE

HTTP2 traffic in-the-clear. Currently the reverse proxy
must translate HTTP2 into HTTP1.

• Server-to-server communication, like datacenter
interconnection, where the HTTP2 traffic is encrypted
using other techniques than TLS like IPSEC.

• Migration to encryption and to HTTP2 simultaneously.
This is something complex [12]. So it is desirable to
separate the deployment of TLS from the migration to
HTTP2.

The paper is organized as follows: section II introduces the
protocol HTTP2 and HTTP1 pipelining. The methodology
and the measurement platform are presented in section III,
while measurements are presented and analyzed in section
IV. We conclude the paper and introduce future work in
section V.

2. HTTP2 PROTOCOL
HTTP2 was developed by the Hypertext Transfer Protocol
working group of the Internet Engineering Task Force
(IETF). The specification started end of 2012 based on
Google experimental SPDY protocol [4] with main
objective to improve HTTP1 performance. HTTP2 is thus
an optimization of the transfer of HTTP1 messages already
deployed by the main stakeholders of the Web. HTTP2 was
approved and published by the IETF as RFC7540 [5] and
RFC7541 [6] in May 2015.

HTTP2 is defined both for HTTP URIs (i.e. without
encryption) and HTTPS URIs (over TLS). Most client
implementations, such as Firefox or Chrome, only support
the transport of HTTP2 over the TLS protocol.

The main characteristics of HTTP2 are the following:

Connection: A HTTP2 connection multiplexes HTTP1
exchanges between a client and a server over the same TCP
or TLS connection.

Stream: Each HTTP1 request and its responses are carried
in a uniquely identified HTTP2 stream.

Frame: HTTP2 carries HTTP1 headers and body in
separate frames. To achieve this, each HTTP1 message is
split into one binary control and several DATA frames.

Control: HTTP2 specifies 9 different control frames which
have the priority over DATA frames (HEADERS,
PRIORITY, RST_STREAM, SETTINGS,
PUSH_PROMISE, PING, GOAWAY,
WINDOW_UPDATE and CONTINUATION). The
scheduling depends on the type of application.

Headers: HTTP1 Header fields are compressed based on
indexation and delta serialization technics specified in [6].

Interleaving: Thanks to the unique stream identifiers and
to the framing, HTTP1 requests can be processed in

parallel. Frames interleaving is further allowed within each
stream. This resolves the HTTP1 pipelining limits.

Streams and frames thus need to be scheduled.

Flow Control: Control frames are always sent first. When
the flow control is activated, it prioritizes the sending of
DATA frames according to their level of priority and the
window size of each stream.

Push: HTTP2 is not only an optimization of HTTP1. It
introduces the PUSH_PROMISE mechanism which allows
the server to send contents in advance in the cache of the
browser.

Transport: The HTTP2 specification [5] requires the
transport of HTTP traffic over a single TCP or a single TLS
connection.

Migration from HTTP/1.1 to HTTP2

The HTTP2 connection is established between a client and
a server. Because the client and server implementations
may differ, HTTP2 offers 3 modes of coexistence and
migration with HTTP1:

• Upgrade of HTTP1 to HTTP2 using the HTTP1
“upgrade” header. It requires the negotiation of the
upper layer protocol using the “H2C” value. A server
which does not support HTTP2 ignores it;

• Direct connection in the clear: Direct mode supposes a
prior knowledge of the support of HTTP2. It does not
require any negotiation;

• Transport over TLS: requires the negotiation of the
HTTP version using ALPN [13] TLS extension.

3. METHODOLOGY
Both HTTP2 and HTTP1 carry the semantic of HTTP.
Nevertheless their transport sub-layers differ.

This section firstly studies the evolution of the HTTP
exchange over the Internet and determines the
characteristics of an Average Web Page (AWP). Then, it
presents the test platform and the measurements. Finally it
details the measurement tools configuration.

3.1 AWP Characteristics
The distribution of the requests types (mime-type) did not
change from 1994 to 2004 as shown in [14]. According to
[15], the main changes are the pages constituents which
move from mostly one file to hundreds. A page is now a
mashup of contents from distributed web services hosted on
different domains (ads, news, images in static domains,
dynamic pages, CDNs …). In 2014 the AWP of the top
300,000 pages is 1.8 MB [16]. With regard to the packets’
sizes, the minimal number of packets per flow is increasing

13th International Conference on New Technologies for Distributed Systems (NOTERE 2016)

978-1-5090-3426-0/16/$31.00 ©2016 IEEE

[17]. To capture this evolution, we retain a minimum of 40
packets number per flow.

Table 1 : AWP characteristics

mime type file size
(kb)

requests
number

response size
(kb)

HTML 56 9 6
CSS 63 7 9
JavaScript 329 20 16
Images 1310 56 23
Flash 90 1 90
other 152 7 22
Total 2000 100 NA

The table above summarizes the measured characteristics
of HTTP archive [18] in May 2015: the download of an
AWP generates 100 requests and downloads 2MB of data
from 16 different domains or sub-domains.

3.2 Web Page Scenario and Scheduler
To compare HTTP2 and HTTP1 performances, we measure
the time needed to download the same AWP with HTTP1
and HTTP2, under the same hardware, software and
network characteristics.

Scenario: The repartition of the AWP components
(contents and scripts) over the 16 domains is given by the
table 2. The first line of the table gives the mime-type of a
request. The first column indicates the domain name.
Finally each cell indicates the number of times this request
is sent to this domain. The size of the files returned in the
responses to each request is given by the table 1.

Table 2 : AWP Requests scheduling

Domain\file type html css js img flash other

domain1.com 1 1 1

domain2.com 1 1 1
domain3.com 4 1
domain4.com 4
domain5.com 4 3
domain6.com 1 1
domain7.com 1 1

domain8.com 1 1 1 1
domain9.com 1 1 1

domain10.com 1 4
domain11.com 4 3 1
domain12.com 1 1
domain13.com 1 1

domain14.com 10
domain15.com 10
domain16.com 30

The domains 14, 15 and 16 receive half of the requests
which are static images. 25% of the domains receive more
than 7 requests.

Client scheduler: In both the cases of HTTP1 pipelining
and of HTTP2, the client opens an unique TCP connection
with each domain and sends immediately the entire HTTP
requests of the scenario to this domain. To avoid any bias
the client deactivates any application-level optimization of
HTTP2 (HTTP2 PUSH_PROMISE and PRIORITY are
disallowed).

3.3 Measurement Platform
Our measurement platform is made of a HTTP server, a
HTTP client requesting a page on the server and a network
interconnecting both of them.

Figure 1: Platform

It is important to notice that servers are implemented as
virtual machines on the same computer. By consequence all
requests and responses share the same bufferization both
for network card and web server CPU. This is emphasized
by the double OS (Windows + Linux) crossed by the
traffic. As an example, as all clients start simultaneously
and all servers share the same 1 Gbps line card of the same
physical machine, the 40 trains of 2 MB of data of the
responses suffer from an additional average delay of
320ms.The client side suffers from the bufferization effect
but is not impacted by virtualization.

The limitations of the platform noticeably increase the
measured delays, however they allow the comparison of
HTTP1 and HTTP2.

3.4 Measurement tools
HTTP Clients: The HTTP client must be able to send
either HTTP2 or HTTP1 unencrypted traffic. We selected
h2load [19] amongst other solutions because it generates
both HTTP1 and HTTP2 in-the-clear and additionally
because it provides the measurement parameters needed to
compute the metrics (payload bytes, header bytes, time to
download data…).

DNS server: The local DNS server resolves the name of
the 16 domains of the Web servers (domain1.com to

13th International Conference on New Technologies for Distributed Systems (NOTERE 2016)

978-1-5090-3426-0/16/$31.00 ©2016 IEEE

domain16.com). It runs on the same machine as the HTTP
servers.

Network: Clients and servers are connected back-to-back
on an Ethernet 1Gbps network. The TCP initial window
size is always 65535 bytes, while the MTU is 1500 bytes.
Network impairments (delay and packets lost) are
generated with the Linux tc command. As an example, the
command below introduces a delay of 50 ms and a packet
loss ratio of 0.3%.

#tc qdisc add dev eth0 root netem delay 50ms loss 0.3%

HTTP Server: The Web server must support both HTTP1
and HTTP2 in-the-clear. We use an Apache HTTP server
version 2.4.17 with the module mod_http2 [10].

Implementation: Clients run on a Linux Debian OS. Each
domain has its own Apache server. They run in a
VirtualBox virtual machine (VM) hosted in a PC having 8
Go of the RAM and a Intel Xenon processor with 8 cores.

Metrics: We measure the page download time. The page
download time represents the duration of the download of
all the contents. It is the time between the first request and
the reception of the last file (e.g. the last .img file of the
domain 16) and the sending of the .html request of the
domain 1).

The table below depicts the end-to-end delay we introduce
during our measurements. They are representative of
mobile and fix networks.

Table 3 : Delay

delay Use Case

10ms f optical
25 ms ADSL

50 ms LTE
75 ms ADSL + intercontinental

100ms 3G

150ms 3G + intercontinental

250ms 2G CDN local
300ms 2G + intercontinental

500ms AMEA + intercontinental

1 second Very long delay

The table below depicts the packet loss percentage we
introduce in our measurements. These are representative
values extracted from the estimation made by the tool
Queen [20]:

Table 4 : Packet Loss Rate

Packet Lost Use case
0.1% Europe : < 0,1% in 50% of the cases
0.3% Europe : < 0,3% in 80% of the cases

0.5% Africa : < 0,5% in 50% of the cases
1% Europe : < 1% in 85% of the cases
2% Europe : < 2% in 95% of the cases
5% Europe : < 5% in 95% of the cases

Calibration: We firstly measured that the sustainable
number of clients supported individually by each HTTP
server is 80. To reduce the side effects due to servers
resources we limit the number of clients to a maximum of
40 during the measurements.

Measurement: Measurements are scheduled and
monitored by a nodeJS script. One measurement consists in
40 clients in parallel downloading the HTTP page of 2MB
over 16 HTTP servers. Hence a measurement generates 640
TCP connections in parallel. The script aggregates H2load
output parameters.

Filtering: Each measure is run 20 times in sequence. We
discard any results having HTTP errors or abnormal PDT
value (when |pdt – mean(pdt)| > 2 sd(pdt)).

4. Results Analysis
In this section, we present the results of our measurements.

More precisely, we compare the Page Download Time
(PDT) with HTTP1 and HTTP2 respectively as the packet
loss and network latency vary.

At first glance, applying the bandwidth delay product [21],
the default TCP window size is responsible for increasing
the PDT when the network delay is larger than 250ms.
However, during the measurement, as the responses suffer
from an additional average delay of 320ms, we estimate the
TCP window size starts increasing the PDT when the
network delay is over 75ms.

4.1 PDT variation with network delay
The following figure depicts the variation of the average
HTTP1 PDT (resp. HTTP2 PDT) as the network delay
increases. The average is computed over all measures for
all packet loss values.

This figure shows that
both HTTP1 and HTTP2
PDT increase as the
network delay increases
which is just common
sense. Nevertheless, we
show that HTTP2 always
performs better than
HTTP1 excepted for one
value.

Figure 2: average HTTP1 & HTTP2 PDT for all delays

13th International Conference on New Technologies for Distributed Systems (NOTERE 2016)

978-1-5090-3426-0/16/$31.00 ©2016 IEEE

The figure below presents the PDT ratio of HTTP1 and
HTTP2 for packet loss of 1 %. When the network delay is
10ms, HTTP2 is up to 2 times faster than HTTP/1.1. Then
it decreases
abruptly. PDTs are
equal for a network
delay of 50ms.
Later, as the
network delay
increases, the ratio
is further rather
stable and HTTP2
is 15 % faster than
HTTP/1.1.

Figure 3: PDT ratio for 1% packet loss

4.2 PDT variation with Packet Loss

Let us now
concentrate one
the variation of
HTTP1 PDT
(resp. HTTP2
PDT) with the
packet loss. In the
following figure,
we plot this
variation for
different network
delay values:
25ms, 100ms and
250ms.

Figure 4: HTTP1 & HTTP2 PDT vs packet loss

This figure shows that both HTTP1 and HTTP2 PDT
increase as the packet loss increases which is once again
common sense. Furthermore, we observe that the ratio of
HTTP2 PDT to HTTP1 PDT decreases as the packet loss
increases.

To confirm this result, we compute the average PDT of
HTTP1 (resp. HTTP2) for a fixed packet loss over all
measures for all network delay values. The result is
presented in the figure below. It shows that HTTP2 is
more resilient to packet loss than HTTP1.

Figure 5: average HTTP1 & HTTP2 PDT for all delays

The following figure presents the number of measurements
for which the PDT lies in the interval [n ; n+1[seconds and
for which the packet loss is superior or equal to 1%. This
figure clearly shows that HTTP2 performs better in case of
lossy network, as the number of measurements for low
values of the PDT is significantly better for HTTP2 as
compared to HTTP1.

Figure 6: H1&H2 values with packet loss ≥1%

4.3 PDT variation with both packet loss and
network delay
The figure bellow represents 3D curves showing HTTP1
(resp. HTTP2) PDT variation with network delay and
packet loss.

Figure 7: H1 & H2 mean PDT (loss, delay)

These figures highlight that the HTTP2 behavior is more
stable than HTTP1 as network delay and packet loss
increases.

13th International Conference on New Technologies for Distributed Systems (NOTERE 2016)

978-1-5090-3426-0/16/$31.00 ©2016 IEEE

5. CONCLUSION
In this article, we have firstly compared HTTP1 and
HTTP2 in terms of functionalities, in particular with regard
to the HTTP1 head of line blocking issue.

We have secondly studied the evolution of web pages
characteristics and determined the constituents of an
average web page. We have additionally chosen packet loss
and network delays that are representative to real
conditions.

Based on these parameters we have compared HTTP1 and
HTTP2 performances under the same hardware, software
and network configurations. We more precisely depict the
page download time of an average web page with HTTP1
pipelining and HTTP2 in-the-clear as network delay and
packet loss vary.

Thanks to our measurements, we show HTTP2 always
performs better than HTTP1, with shorter page download
times. The HTTP2 page download time increases more
slowly than HTTP1 as the network delay increases,
remaining 15% lower as compared to the HTTP1 PDT. The
HTTP2 page download time also increases more slowly
than HTTP1 as the packet loss increases. In this last case,
we show that the two protocols have different behaviours
highlighting a much better resiliency of HTTP2 towards
packet loss.

Our results thus highlight the benefits of moving Web
servers from HTTP/1.1 to HTTP2. This benefit increases
substantially when it is coupled with the migration of a
reverse proxy to HTTP2 over TLS. Server-to-server
exchanges relying on encrypted communications would
further benefit from the better performance of HTTP2 in-
the-clear.

Yet our results are only derived from measurements
between clients and servers emulated on two machines.
They shall be confirmed with further measurements and
with higher TCP windows size values in the clients. Further
tests are also required to characterize the HTTP2
performance in mobile situation, the gain of performance
provided by HTTP2 push and priority mechanisms and
finally the robustness of transporting the HTTP2 traffic on
a unique long duration TCP connection.

6. REFERENCES
[1] The overweight web: Average web page size is up

15% in 2014

[2] NGINX, HTTP/2 for Web Application Developers,
September 16th 2015

[3] GTmetrics, PageSpeed: Parallelize downloads across
hostnames

[4] M. Belshe & R. Peon, SPDY Protocol, draft-mbelshe-
httpbis-spdy-00, Feb 2012

[5] M. Belshe, R. Peon & M. Thomson, Hypertext
Transfer Protocol Version 2 (HTTP/2), RFC 7540,
May 2015

[6] R. Peon & H. Ruellan, HPACK: Header Compression
for HTTP2, RFC 7541, May 2015

[7] J. Padhye & H. F. Nielsen, A comparison of SPDY
and HTTP performance, Jul 26, 2012.

[8] Jeffrey Erman & al., Towards a SPDY’ier Mobile
Web, IEEE/ACM Transactions on Networking, Vol.
23, No. 6, Dec 2015

[9] HTTP2 Implementations
[10] HTTP/2 in Apache httpd
[11] Nghttp2: HTTP/2 C Library, Feb 16th, 2015
[12] Valentin Bartenev, NGINX, 7 Tips for Faster HTTP/2

Performance, October 26, 2015
[13] S. Friedl, A. Popov, A. Langley & E. Stephan, TLS

Application-Layer Protocol Negotiation Extension,
RFC 7301, July 2014

[14] A. Williams, M. Arlitt, C. Williamson & K. Bark,
Web Workload characterization : ten years later, 2003

[15] Joachim Charzinski, Traffic Properties, Client Side
Cachability and CDN Usage of Popular Web Sites,
Proc. MMB/DFT 2010, Essen, Germany, Mar. 2010,
pp. 136-150

[16] websiteoptimization.com, Average Web Page Breaks
1600K, Jul 2014.

[17] P. Owezarski and N. Larrieu,Internet traffic
characterization – an analysis of traffic oscillations,
2004

[18] HTTP archive, May 2015 Alexa STAT
[19] Nghttp2, h2load
[20] Y. Angela Wang, C. Huang , J. Li & K. W. Ross,

Queen: Estimating Packet Loss Rate, Microsoft
technical report

[21] High Performance Browser Networking, Building
Blocks of TCP

[22] D. Stenberg, Mozilla, TCP Tuning for HTTP, draft-
stenberg-httpbis-tcp-01, Dec 21, 2015

[23] HttpWatch, A Simple Performance Comparison of
HTTPS, SPDY and HTTP/2, Jan 16, 2015

13th International Conference on New Technologies for Distributed Systems (NOTERE 2016)

978-1-5090-3426-0/16/$31.00 ©2016 IEEE

