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ABSTRACT 

The average Web Page size is constantly increasing: it 
doubled between January 2012 and January 2015 [1]. In 
such a context the transport of the Internet traffic becomes 
very challenging. To moderate the impact of the increase of 
traffic on end-users’ Quality of Experience (QoE), the 
IETF specified the protocol HTTP2, which optimizes the 
transfer of the HTTP1 protocol. 

In this paper we provide a comparison of HTTP1 and 
HTTP2, both in terms of functionalities and in terms of 
Page Download Time (PDT). As end-to-end encryption is 
not always required, this comparison is provided in-the-
clear. To avoid any bias in the comparison, our 
measurements are made with the same hardware, the same 
software and the same transport conditions (multiplexing 
over a single TCP connection per domain).  

Based on our measurement, we show that HTTP2 always 
highlights better performances that HTTP1. More precisely, 
we observe the HTTP2 PDT remains 15% lower than 
HTTP1 PDT as the network delay increases. Furthermore, 
we observe that the ratio of HTTP2 PDT to HTTP1 PDT 
decreases as the packet loss increases, showing that HTTP2 
is more resilient to packet loss than HTTP1. 
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1. INTRODUCTION 
The average Web Page size has doubled over the last 3 
years [1]. The main part of the increase of traffic is 
naturally driven by the increase of the resolution of the 
video and the complexity of e-commerce applications. In 
addition, there is a hidden part which comes from 
optimizations made by web sites [2]. As an example, 
domain sharding [3] (content storage in multiple sub-
domains to increase the number of concurrent connections) 
increases the throughput available between a browser and a 
Web application but adds a lot of connection overhead as it 

duplicates headers, cookies, CSS files and JavaScript files 
exchanges. 

HTTP1 has been designed in 1990 to request HTML pages 
from a text-based web browser. Modern Web applications 
have stronger requirements in term of interactivity and 
must adapt to extremely varying network conditions in 
mobile situations. However, while downloading the web 
page requires several requests, these requests cannot be 
truly parallelized. Even with HTTP/1.1 pipelining the 
response to a request n has to wait until the response to the 
request n-1 is sent. This is the well-known HTTP head of 
line blocking issue. 

To overcome this issue, Google experienced a new protocol 
named SPDY [4]. The initiative was reused by the IETF to 
specify HTTP2. HTTP2 [5, 6] does not change HTTP 
semantics. HTTP2 transports HTTP headers and data in 
separate frames. HTTP2 headers compression [6] optimizes 
headers carrying on-the-wire, solving HTTP headers 
repetitions issue. Both HTTP/1.1-pipelining and HTTP2 
support multiplexing the requests in the same TCP 
connection. In HTTP2, requests and responses are further 
numbered. This allows interleaving the responses in 
parallel and solves the HTTP head of line blocking issue. 

A number of papers have presented the benefits of SPDY 
or HTTP2 [7, 8]. Since existing HTTP2 stacks are 
implemented over TLS, most of the time these studies 
compared HTTP2/TLS with HTTP1/TLS [9]. In this paper 
we chose to compare the performance of the protocols 
HTTP1 and HTTP2 in-the-clear over TCP. We use the new 
Apache module [10] mod_http2 and the Nghttp2 [11] for 
this purpose. 

Web sites are progressively moving to HTTPS to protect 
end-users privacy. In the meantime, they are migrating to 
HTTP2 to improve both network performance and end-user 
experience. Although the Internet is moving to encryption, 
there are relevant use cases where TLS encryption is not 
required while HTTP2 is still desirable: 

• Servers located behind a reverse proxy terminating 
encrypted HTTP2 connections and receiving the 
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HTTP2 traffic in-the-clear. Currently the reverse proxy 
must translate HTTP2 into HTTP1. 

• Server-to-server communication, like datacenter 
interconnection, where the HTTP2 traffic is encrypted 
using other techniques than TLS like IPSEC. 

• Migration to encryption and to HTTP2 simultaneously. 
This is something complex [12]. So it is desirable to 
separate the deployment of TLS from the migration to 
HTTP2. 

The paper is organized as follows: section II introduces the 
protocol HTTP2 and HTTP1 pipelining. The methodology 
and the measurement platform are presented in section III, 
while measurements are presented and analyzed in section 
IV. We conclude the paper and introduce future work in 
section V. 

2. HTTP2 PROTOCOL  
HTTP2 was developed by the Hypertext Transfer Protocol 
working group of the Internet Engineering Task Force 
(IETF). The specification started end of 2012 based on 
Google experimental SPDY protocol [4] with main 
objective to improve HTTP1 performance. HTTP2 is thus 
an optimization of the transfer of HTTP1 messages already 
deployed by the main stakeholders of the Web. HTTP2 was 
approved and published by the IETF as RFC7540 [5] and 
RFC7541 [6] in May 2015. 

HTTP2 is defined both for HTTP URIs (i.e. without 
encryption) and HTTPS URIs (over TLS). Most client 
implementations, such as Firefox or Chrome, only support 
the transport of HTTP2 over the TLS protocol. 

The main characteristics of HTTP2 are the following:  

Connection: A HTTP2 connection multiplexes HTTP1 
exchanges between a client and a server over the same TCP 
or TLS connection. 

Stream: Each HTTP1 request and its responses are carried 
in a uniquely identified HTTP2 stream. 

Frame: HTTP2 carries HTTP1 headers and body in 
separate frames. To achieve this, each HTTP1 message is 
split into one binary control and several DATA frames.  

Control: HTTP2 specifies 9 different control frames which 
have the priority over DATA frames (HEADERS, 
PRIORITY, RST_STREAM, SETTINGS, 
PUSH_PROMISE, PING, GOAWAY, 
WINDOW_UPDATE and CONTINUATION). The 
scheduling depends on the type of application. 

Headers: HTTP1 Header fields are compressed based on 
indexation and delta serialization technics specified in [6]. 

Interleaving: Thanks to the unique stream identifiers and 
to the framing, HTTP1 requests can be processed in 

parallel. Frames interleaving is further allowed within each 
stream. This resolves the HTTP1 pipelining limits. 

Streams and frames thus need to be scheduled.  

Flow Control: Control frames are always sent first. When 
the flow control is activated, it prioritizes the sending of 
DATA frames according to their level of priority and the 
window size of each stream. 

Push: HTTP2 is not only an optimization of HTTP1. It 
introduces the PUSH_PROMISE mechanism which allows 
the server to send contents in advance in the cache of the 
browser. 

Transport: The HTTP2 specification [5] requires the 
transport of HTTP traffic over a single TCP or a single TLS 
connection. 

Migration from HTTP/1.1 to HTTP2 

The HTTP2 connection is established between a client and 
a server. Because the client and server implementations 
may differ, HTTP2 offers 3 modes of coexistence and 
migration with HTTP1: 

• Upgrade of HTTP1 to HTTP2 using the HTTP1 
“upgrade” header. It requires the negotiation of the 
upper layer protocol using the “H2C” value. A server 
which does not support HTTP2 ignores it; 

• Direct connection in the clear: Direct mode supposes a 
prior knowledge of the support of HTTP2. It does not 
require any negotiation; 

• Transport over TLS: requires the negotiation of the 
HTTP version using ALPN [13] TLS extension. 

3. METHODOLOGY  
Both HTTP2 and HTTP1 carry the semantic of HTTP. 
Nevertheless their transport sub-layers differ. 

This section firstly studies the evolution of the HTTP 
exchange over the Internet and determines the 
characteristics of an Average Web Page (AWP). Then, it 
presents the test platform and the measurements. Finally it 
details the measurement tools configuration. 

3.1 AWP Characteristics 
The distribution of the requests types (mime-type) did not 
change from 1994 to 2004 as shown in [14]. According to 
[15], the main changes are the pages constituents which 
move from mostly one file to hundreds. A page is now a 
mashup of contents from distributed web services hosted on 
different domains (ads, news, images in static domains, 
dynamic pages, CDNs …). In 2014 the AWP of the top 
300,000 pages is 1.8 MB [16]. With regard to the packets’ 
sizes, the minimal number of packets per flow is increasing 
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[17]. To capture this evolution, we retain a minimum of 40 
packets number per flow. 

Table 1 : AWP characteristics 

mime type file size 
(kb) 

requests 
number 

response size 
(kb)  

HTML 56 9 6 
CSS 63 7 9 
JavaScript 329 20 16 
Images 1310 56 23 
Flash 90 1 90 
other 152 7 22 
Total 2000 100 NA 

The table above summarizes the measured characteristics 
of HTTP archive [18] in May 2015: the download of an 
AWP generates 100 requests and downloads 2MB of data 
from 16 different domains or sub-domains. 

3.2 Web Page Scenario and Scheduler 
To compare HTTP2 and HTTP1 performances, we measure 
the time needed to download the same AWP with HTTP1 
and HTTP2, under the same hardware, software and 
network characteristics. 

Scenario: The repartition of the AWP components 
(contents and scripts) over the 16 domains is given by the 
table 2. The first line of the table gives the mime-type of a 
request. The first column indicates the domain name. 
Finally each cell indicates the number of times this request 
is sent to this domain. The size of the files returned in the 
responses to each request is given by the table 1. 

Table 2 : AWP Requests scheduling 

Domain\file type html css js img flash other 

domain1.com 1 1 1    

domain2.com 1 1 1    
domain3.com   4   1 
domain4.com   4    
domain5.com   4 3   
domain6.com 1 1     
domain7.com 1 1     

domain8.com 1 1 1   1 
domain9.com 1 1 1    

domain10.com 1     4 
domain11.com   4 3  1 
domain12.com 1 1     
domain13.com 1    1  

domain14.com    10   
domain15.com    10   
domain16.com    30   

The domains 14, 15 and 16 receive half of the requests 
which are static images. 25% of the domains receive more 
than 7 requests. 

Client scheduler: In both the cases of HTTP1 pipelining 
and of HTTP2, the client opens an unique TCP connection 
with each domain and sends immediately the entire HTTP 
requests of the scenario to this domain. To avoid any bias 
the client deactivates any application-level optimization of 
HTTP2 (HTTP2 PUSH_PROMISE and PRIORITY are 
disallowed). 

3.3 Measurement Platform 
Our measurement platform is made of a HTTP server, a 
HTTP client requesting a page on the server and a network 
interconnecting both of them. 

 

Figure 1: Platform  

It is important to notice that servers are implemented as 
virtual machines on the same computer. By consequence all 
requests and responses share the same bufferization both 
for network card and web server CPU. This is emphasized 
by the double OS (Windows + Linux) crossed by the 
traffic. As an example, as all clients start simultaneously 
and all servers share the same 1 Gbps line card of the same 
physical machine, the 40 trains of 2 MB of data of the 
responses suffer from an additional average delay of 
320ms.The client side suffers from the bufferization effect 
but is not impacted by virtualization.  

The limitations of the platform noticeably increase the 
measured delays, however they allow the comparison of 
HTTP1 and HTTP2.  

3.4 Measurement tools 
HTTP Clients: The HTTP client must be able to send 
either HTTP2 or HTTP1 unencrypted traffic. We selected 
h2load [19] amongst other solutions because it generates 
both HTTP1 and HTTP2 in-the-clear and additionally 
because it provides the measurement parameters needed to 
compute the metrics (payload bytes, header bytes, time to 
download data…). 

DNS server: The local DNS server resolves the name of 
the 16 domains of the Web servers (domain1.com to 
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domain16.com). It runs on the same machine as the HTTP 
servers. 

Network: Clients and servers are connected back-to-back 
on an Ethernet 1Gbps network. The TCP initial window 
size is always 65535 bytes, while the MTU is 1500 bytes. 
Network impairments (delay and packets lost) are 
generated with the Linux tc command. As an example, the 
command below introduces a delay of 50 ms and a packet 
loss ratio of 0.3%. 

#tc qdisc add dev eth0 root netem delay 50ms loss 0.3% 

HTTP Server: The Web server must support both HTTP1 
and HTTP2 in-the-clear. We use an Apache HTTP server 
version 2.4.17 with the module mod_http2 [10].  

Implementation: Clients run on a Linux Debian OS. Each 
domain has its own Apache server. They run in a 
VirtualBox virtual machine (VM) hosted in a PC having 8 
Go of the RAM and a Intel Xenon processor with 8 cores.  

Metrics: We measure the page download time. The page 
download time represents the duration of the download of 
all the contents. It is the time between the first request and 
the reception of the last file (e.g. the last .img file of the 
domain 16) and the sending of the .html request of the 
domain 1). 

The table below depicts the end-to-end delay we introduce 
during our measurements. They are representative of 
mobile and fix networks. 

Table 3 : Delay  

delay Use Case 

10ms f optical 
25 ms ADSL 

50 ms  LTE  
75 ms ADSL + intercontinental 

100ms 3G 

150ms 3G + intercontinental 

250ms 2G CDN local 
300ms 2G + intercontinental 

500ms AMEA + intercontinental 

1 second Very long delay 

The table below depicts the packet loss percentage we 
introduce in our measurements. These are representative 
values extracted from the estimation made by the tool 
Queen [20]: 

Table 4 : Packet Loss Rate 

Packet Lost Use case 
0.1% Europe : < 0,1% in 50% of the cases 
0.3% Europe : < 0,3% in 80% of the cases 

0.5% Africa : < 0,5% in 50% of the cases 
1% Europe : < 1% in 85% of the cases 
2% Europe : < 2% in 95% of the cases 
5% Europe : < 5% in 95% of the cases 

Calibration: We firstly measured that the sustainable 
number of clients supported individually by each HTTP 
server is 80. To reduce the side effects due to servers 
resources we limit the number of clients to a maximum of 
40 during the measurements.  

Measurement: Measurements are scheduled and 
monitored by a nodeJS script. One measurement consists in 
40 clients in parallel downloading the HTTP page of 2MB 
over 16 HTTP servers. Hence a measurement generates 640 
TCP connections in parallel. The script aggregates H2load 
output parameters.  

Filtering: Each measure is run 20 times in sequence. We 
discard any results having HTTP errors or abnormal PDT 
value (when |pdt – mean(pdt)| > 2 sd(pdt)). 

4. Results Analysis 
In this section, we present the results of our measurements.  

More precisely, we compare the Page Download Time 
(PDT) with HTTP1 and HTTP2 respectively as the packet 
loss and network latency vary.  

At first glance, applying the bandwidth delay product [21], 
the default TCP window size is responsible for increasing 
the PDT when the network delay is larger than 250ms. 
However, during the measurement, as the responses suffer 
from an additional average delay of 320ms, we estimate the 
TCP window size starts increasing the PDT when the 
network delay is over 75ms. 

4.1 PDT variation with network delay 
The following figure depicts the variation of the average 
HTTP1 PDT (resp. HTTP2 PDT) as the network delay 
increases. The average is computed over all measures for 
all packet loss values.  

This figure shows that 
both HTTP1 and HTTP2 
PDT increase as the 
network delay increases 
which is just common 
sense. Nevertheless, we 
show that HTTP2 always 
performs better than 
HTTP1 excepted for one 
value.  

Figure 2: average HTTP1 & HTTP2 PDT for all delays 

13th International Conference on New Technologies for Distributed Systems (NOTERE 2016) 

978-1-5090-3426-0/16/$31.00 ©2016 IEEE



The figure below presents the PDT ratio of HTTP1 and 
HTTP2 for packet loss of 1 %. When the network delay is 
10ms, HTTP2 is up to 2 times faster than HTTP/1.1. Then 
it decreases 
abruptly. PDTs are 
equal for a network 
delay of 50ms. 
Later, as the 
network delay 
increases, the ratio 
is further rather 
stable and HTTP2 
is 15 % faster than 
HTTP/1.1. 

Figure 3: PDT ratio for 1% packet loss  

 
4.2 PDT variation with Packet Loss 

Let us now 
concentrate one 
the variation of 
HTTP1 PDT 
(resp. HTTP2 
PDT) with the 
packet loss. In the 
following figure, 
we plot this 
variation for 
different network 
delay values: 
25ms, 100ms and 
250ms.  

Figure 4: HTTP1 & HTTP2 PDT vs packet loss 

This figure shows that both HTTP1 and HTTP2 PDT 
increase as the packet loss increases which is once again 
common sense. Furthermore, we observe that the ratio of 
HTTP2 PDT to HTTP1 PDT decreases as the packet loss 
increases.  

To confirm this result, we compute the average PDT of 
HTTP1 (resp. HTTP2) for a fixed packet loss over all 
measures for all network delay values. The result is 
presented in the figure below. It shows that HTTP2 is 
more resilient to packet loss than HTTP1. 

 

Figure 5: average HTTP1 & HTTP2 PDT for all delays 

The following figure presents the number of measurements 
for which the PDT lies in the interval [n ; n+1[ seconds and 
for which the packet loss is superior or equal to 1%. This 
figure clearly shows that HTTP2 performs better in case of 
lossy network, as the number of measurements for low 
values of the PDT is significantly better for HTTP2 as 
compared to HTTP1.  

 

Figure 6: H1&H2 values with packet loss ≥1% 

4.3 PDT variation with both packet loss and 
network delay 
The figure bellow represents 3D curves showing HTTP1 
(resp. HTTP2) PDT variation with network delay and 
packet loss.  

 

Figure 7: H1 & H2 mean PDT (loss, delay) 

These figures highlight that the HTTP2 behavior is more 
stable than HTTP1 as network delay and packet loss 
increases. 
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5. CONCLUSION 
In this article, we have firstly compared HTTP1 and 
HTTP2 in terms of functionalities, in particular with regard 
to the HTTP1 head of line blocking issue.  

We have secondly studied the evolution of web pages 
characteristics and determined the constituents of an 
average web page. We have additionally chosen packet loss 
and network delays that are representative to real 
conditions. 

Based on these parameters we have compared HTTP1 and 
HTTP2 performances under the same hardware, software 
and network configurations. We more precisely depict the 
page download time of an average web page with HTTP1 
pipelining and HTTP2 in-the-clear as network delay and 
packet loss vary.  

Thanks to our measurements, we show HTTP2 always 
performs better than HTTP1, with shorter page download 
times. The HTTP2 page download time increases more 
slowly than HTTP1 as the network delay increases, 
remaining 15% lower as compared to the HTTP1 PDT. The 
HTTP2 page download time also increases more slowly 
than HTTP1 as the packet loss increases. In this last case, 
we show that the two protocols have different behaviours 
highlighting a much better resiliency of HTTP2 towards 
packet loss.  
 
Our results thus highlight the benefits of moving Web 
servers from HTTP/1.1 to HTTP2. This benefit increases 
substantially when it is coupled with the migration of a 
reverse proxy to HTTP2 over TLS. Server-to-server 
exchanges relying on encrypted communications would 
further benefit from the better performance of HTTP2 in-
the-clear. 

Yet our results are only derived from measurements 
between clients and servers emulated on two machines. 
They shall be confirmed with further measurements and 
with higher TCP windows size values in the clients. Further 
tests are also required to characterize the HTTP2 
performance in mobile situation, the gain of performance 
provided by HTTP2 push and priority mechanisms and 
finally the robustness of transporting the HTTP2 traffic on 
a unique long duration TCP connection. 
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