

SEWER NETWORK MODELING

Aalto University / 21.3.2019

Contents

- Sewer network modeling in general
- Recap on sewer network model components
 - Point components
 - Line components
 - Non-physical components
- Modeling the sewage flow and leakage
- Task: Modeling a pumping station and pressurized pipes
- Essential results in sewer modeling
- Few last words

SEWER NETWORK MODELING IN GENERAL

SEWER NETWORK MODELING IN GENERAL

- General lecture on modeling already held
- Lecture on WSS modeling already held most issues apply here also. We'll focus on the differences.
 - Modeling as a project is similar
 - Input data and systems from where they are collected are similar
 - Reporting and visualization have similar general principles crucial results are different
- Storm water lecture also was just held
- Simulation times are longer than in WSS (significant in larger networks)
 - Can be reduced by varying calculation parameters
 - And often simply by using a smaller model, if the whole system is not under analysis
- Usually less measurements available than in WSS
- Accuracy in general: WSS > SEWER > STORM WATER
- Largest sources of inaccuracy in sewer modeling:
 - Leakage precise location and amount
 - Clogs
 - Sensitivity to elevations
 - (Errors/assumptions in model)

RECAP ON SEWER NETWORK MODEL COMPONENTS

NODE OBJECT: JUNCTION / MANHOLE

Junction-6 - Properties ×	-				
Properties Results Identifiers	1				
⊡ General					
Name	Junction-6				
Description					
X-Coordinate	25,496,431				
Y-Coordinate	6,674,745				
Z-Coordinate (Elevation)	1.5				
Symbol	No symbol set				
Depth	2				
Rim Elevation	3.5				
Critical Level					
Tags					
Properties					
Average Demand	0.04				
Diameter	0 0 1				
Initial Level					
Number of Consumers					
Ponding Area	0				
Surcharge Depth	0				
Settings					
Station	[None]				
⊡ Inflows					
Daily Demand	3.44				
Inflows	1				
Treatment					
Sewershed Area	0				
Unit Hydrograph	[None]				
Ignore for Geocoded					

21.3.2019

Surcharge depth represents nodes ability to hold pressure. Default is 0 - it holds no pressure above its rim - if water level rises above rim elevation, it floods out.

Junctions default area can be defined in Model Properties and used for all manholes. By default it is 1,168 m² - an area produced by diameter of about 1,22 m.

NODE OBJECT: STORAGE UNIT

StorageUnit-1 - Properties ×	_
Properties Results Identifiers	
General	
Name	StorageUnit-1
Description	Pumping station storage unit. It
X-Coordinate	25,496,458
Y-Coordinate	6,675,012
Z-Coordinate (Elevation)	8.95
Symbol	Sewage Pumping Station
Depth	3
Rim Elevation	11.95
Critical Level	
Tags	
Properties	
Initial Level	0
Ponding Area	0
Surcharge Depth	0
Area	7.07
Area Curve	[None]
Area Coefficient	0
Area Exponent	0
Area Constant	7.07
Volume	21.21
Diameter	3
Evaporation Fraction	0
Soil Suction Head	\$
Soil Saturated Hydraulic Conductivity	\$
Soil Initial Moisture Deficit	\$
averageDemand	0.00847
numberOfConsumers	1
Settings	
Station	[None]

Storage unit is a finite tank: flow into or out of the tank changes the head (ie. level and volume)

Volume is calculated with a formula or given in a volume curve

• Formula: Volume = (A*Depth^B + C)*Depth

In our exercises we assume that the storage unit is symmetrical along it's vertical axis

- This by far the most common type in reality also
- All the other constants are 0 except Area Constant
- Thus volume is C * depth \rightarrow C is the cross section area of the tank

Essential parameters for storage unit are:

- Elevation of the bottom (Z-coordinate)
- Depth of the storage unit (Depth)
- Area (Area Constant)

NODE OBJECT: OUTFALL

Outfall-4 - Proper	ties ×			-			
Properties Res	ults Ide	entifiers					
General							
Name			Outfall-4				
Description							
X-Coordinate			25,496,354				
Y-Coordinate			6,674,611				
Z-Coordinate (Eleva	tion)		0.253				
Symbol			No symbol set				
Depth			0				
Rim Elevation			0.253				
Critical Level			\$				
Tags							
Properties							
Average Demand			0.032				
Check Valve							
Number of Consume	ers		1				
Stage			0				
Tidal Curve			[None]				
Туре			NORMAL	\sim			
Settings							
Station			[None]				
Inflows							
Daily Demand			2.769				
Inflows			1				
Treatment							
Sewershed Area			0				
Unit Hydrograph			[None]				
Ignore for Geocode	d						

21.3.2019

Outfall is an infinite receiving water body: head does not change depending on the flow (doesn't "fill up"). Head CAN be made to change over simulation time (but is usually fixed).

All the water in a model has to have a theoretical possibility to end up in a outfall. In outfall the water is removed from the system.

Outfall usually models WWTP inflow tank or some natural body of water (lake, river, sea).

In our models outfall is Type "**Normal**" and "**Elevation**" is used to model the elevation of the outfall (infinite water surface).

LINE OBJECT: PIPE

Essential attributes of pipes:

- Length (automatically calculated, but can also be set manually)
- Shape
- Diameter (inner diameter of the pipe)
- Roughness (Manning / Darcy-Weisbach)

(- z1 and z2 = elevation difference from start/end junction invert elevation)

 Z_{2}

Different pipe shapes

Power

Force Main

Rectangular

Circular

Trapezoidal

Triangular

Irregular

Filled Circular

Z₁

Diameter

LINE OBJECT: PIPE

Most of the sewage network is gravitational, in which the pipe headloss is calculated using Manning's equation on closed conduits.

Mannings equation is not precise on very smooth surfaces.

$$Q = \frac{1}{n} R_n^{2/3} S_f^{1/2}$$

Q, flow [m³/s] n, manning's factor [s/m^{1/3}] R_n , Hydraulic radius (Area/Perimeter) [m] S_f , Slope [m/m]

A.7 Manning's n - Closed Conduits

Conduit Material	Manning n
Asbestos-cement pipe	0.011 - 0.015
Brick	0.013 - 0.017
Cast iron pipe - Cement-lined & seal coated	0.011 - 0.015
Concrete (monolithic) - Smooth forms - Rough forms	0.012 - 0.014 0.015 - 0.017
Concrete pipe	0.011 - 0.015
Corrugated-metal pipe (1/2-in. x 2-2/3-in. corrugations) - Plain - Paved invert - Spun asphalt lined	0.022 - 0.026 0.018 - 0.022 0.011 - 0.015
Plastic pipe (smooth)	0.011 - 0.015
Vitrified clay - Pipes - Liner plates	0.011 - 0.015 0.013 - 0.017

Common pipe materials: Concrete (B/Betoni) Plastics (PVC) (+ PEH for pressure) Iron / Cast iron Asbestos cement

Source: ASCE (1982). Gravity Sanitary Sewer Design and Construction, ASCE Manual of Practice No. 60, New York, NY.

Mika Kuronen / Fluidit Oy / mika.kuronen@fluidit.fi

LINE OBJECT: PRESSURIZED PIPE

When modeling a pressurized pipe in sewer model:

- In reality, there are no manholes (junctions) in the line, but in order to get the pipe profile right, junctions are needed for the elevation of the pipe profile
 - (link components have no elevation, only the elevation of their start and end nodes)

21.3.2019

- Junctions in a pressurized line are not allowed to flood, so we need to implement Surcharge Depth for these junctions. Good value to use is 100 mwc (~ 10 bar), or if you know the pressure class of the pipe, use it.
- **Depth** for these junctions should be set to 0 these are not real manholes and have no volume
- All the pipes (conduit) in a pressurized pipeline should to have the shape Force Main. Headloss formula is different in pressurized pipes.

Mika Kuronen / Fluidit Oy / mika.kuronen@fluidit.fi

LINE OBJECT: PRESSURIZED PIPE

Headloss formula in pressurized pipe (Darcy-Weisbach) \rightarrow

Pipes not marked as Force Main can still get pressurized

 $h_f = f \cdot \frac{L}{d} \frac{v^2}{2q}$

 $\begin{array}{l} h_{f} \text{, friction loss [m]} \\ \text{L, pipe length [m]} \\ \text{d , hydraulic diameter (inner diameter) -> Pipe } D_{pipe} \text{ [m]} \\ \text{v, average speed of flow in the flow cross-section } [\frac{m}{s}] \\ \text{g, gravity constant } [\frac{m}{s^{2}}] \\ f_{,} \text{ dimensionless friction coefficient} \end{array}$

Different materials have different friction coefficients. (eg iron pipe vs plastic pipe)

PUMPING STATION

21.3.2019

& Fluidit

Typical ("package") pumping station have the following components (for modeling purposes):

- Inlet pipe (can be pressurized or gravitational)
 - Often not connected to the bottom of tank, but higher
- A storage unit tank
- Two pumps
- Outlet pipe, pressurized (Type: Force main)

LINE OBJECT: PUMP

21.3.2019

& Fluidit

Pumps need to have a pump curve (via pump definition) and startup & shutoff depths.

In sewer systems (usually by far) most pumps are controlled by simple on/off water levels. Complex control systems can also be modeled.

In pump sizing you need to take into account:

- Discharge static head / "geometric head" (due to elevations)
- Friction head (due to friction loss in pressurized pipe)
- Flow

Mika Kuronen / Fluidit Oy / mika.kuronen@fluidit.fi

PUMPS IN SEWER SYSTEMS

- Pumps, especially impellers, vary more than in WSS
- Generally have higher penetration, but lower efficiencies
- Higher wearing
 - There can be a big difference in pump head/flow compared to new pumps
- Smaller ones are usually submerged pumps, larger ones either submerged or dry
 - Difference is not that significant for the pump itself, but more for the electric motor (cooling)
- Typical pumping station:
 - Has two pumps, large ones three
 - Simple on/off controls

NON-PHYSICAL OBJECT: PUMP CURVE

- Pump curve depicts the output of the pump, usually as a Q-H (Flow/Head) –relation
 - This is how real pumps work and QH-curves are provided by the manufacturer
- In Fluidit Sewer curves are defined in Model → Curves, and they are composed into pumps in Model → Pump Definitions. Pump components in the model are then given a pump definition.
- With only one point given, program will fit a "general" pump curve around this (nominal duty) point
 - Assuming: max flow = 2 * nominal flow and max head = 1,33 * nominal head

21.3.2019

- In reality, wastewater pumps, especially small ones, can have very different curves from this assumption
 - Curves can be given with more than just one point (three is next where a curve is fitted, or in a tabular form with as many points as needed)

NON-PHYSICAL OBJECT: EFFICIENCY CURVE

- Efficiency curve depicts pumps hydraulic efficiency as Q-Ŋ (Flow-Efficiency) –relation
 - (Total efficiency in EPASWMM, as there is no separate motor/inverted loss calculation as in Fluidit Sewer)
- Efficiency curves are not compulsory they have no hydraulic effect on the system. They are used only for energy calculations.
- In **Pump Definitions** a "whole" pump is assembled from pump curve, efficiency curve and other information (eg. electric motor efficiency)
- In Fluidit Sewer results:
 - Electric Efficiency is total efficiency from electric power to hydraulic power
 - Hydraulic Efficiency is the pumps efficiency from impeller shaft power to hydraulic power (ie. not including motor losses)

PUMPS IN PARALLEL

Pump pumping n. 90 l/s
Pumps pumping n. 140 l/s
Pumps pumping n. 170 l/s

21.3.2019

Headloss increase in power of velocity:

$$h_f = f \cdot \frac{L}{d} \frac{v^2}{2g}$$

% Fluidit

Mika Kuronen / Fluidit Oy / mika.kuronen@fluidit.fi

LINE OBJECT: ORIFACES, WEIRS, OUTLETS

- All of these are links that can be used to regulate flow from one node to another
- Oriface
- Weir
- Outlet
 - "a generic type of flow regulator with a user defined rating curve that relates flow rate to effective head"
- Quite rare in sewer networks, more used in storm networks
- Simple "overflow-pipes" can be modeled without these, with a normal pipe that has Z1 > 0
 - (pipe that does not start from the bottom of the manhole)

Suppressed Rectangular Weir

b

Crest

Contracted Rectangular Weir

Yfull

Zw

MODELING SEWAGE FLOW + LEAKAGE

CONSUMED WATER: GEOCODED DEMANDS

- Geocoded demands are just one way to bring inflow into model
 - Geocoded demands are assigned to a junction
 - For calculation purposes, it does not differ from direct junction inflow
- Usually input data is actual billed water for every customer
 - Initial data: consumption (m³/a), coordinates (or address), user id, customer type
 - Seasonal users may cause inaccuracies...
- ...or literature values
 - Actual data not available or new users
- If you spectate a high enough number of people the inflow amounts from human sources start to follow a certain pattern, which is related to the time of the day and day of the week
 - This has already been discussed in WSS modelling

21.3.2019

- Usually it is assumed that all consumed water is directly flowing to sewer (as in billing)
- Exceptions: factories, swimming halls... large users need attention

LEAKAGE

- Typical average (yearly) leakage water percentage in sewage network is 30...50 %
- Maximum leakage can be more than five times the average
- Flow peaks (on a whole network level) are typically caused by leakage, not consumed water
 - But for small areas this can be the other way around
- Amount and temporal change of leakage varies a lot between networks
- Normal inflow from the environment to the sewer is related to poor pipelines and manholes, with water originating from rain and groundwater
- Peaks are often caused by natural events, such as storms and snowmelt

LEAKAGE

- Leakage is usually estimated based on measured data
 - "Water pumped from the zone" "water pumped into the zone" "billed water in the zone" = leakage in the zone
 - Usually flow measurements are not available from all (if any) pumping stations
 - Often only pump running time & number of pump startups
 - \rightarrow can be used to evaluate flow, but includes more uncertainties
- If no pumping station data is available at all or it is of bad quality, inflow to WWTP is almost always available
 - \rightarrow can be used to calculate leakage, but only on whole network level
- Literature values (l/s/km, often different values for different diameter pipes)
- Leakage is usually modelled as a direct steady inflow into junctions
 - Steady \rightarrow can give a "too good" estimate if directly calculated from daily/yearly leakage (what if it peaks at consumption peak?)
 - Has no natural daily pattern (compared to consumed water)

21.3.2019

- Fluidit Sewer has tools to distribute leakage into junctions depending on the length and diameter of pipes connected to it
- Other approach is to use catchments \rightarrow takes a lot more work and calibration, but can be more accurate
- In general, modeling leakage is the single largest source of inaccuracy in sewer models

LEAKAGE

- Smaller the area, the bigger role a single water consumer plays
 - \rightarrow one house, consumed water varies considerably from average
- Bigger the area, the better statistical behaviour "smooths" consumed water
 - → on a city scale, variation is often diminished to about 0,8...1,2 factors for daily water usage
- Peak leakages are usually caused by storms or snowmelt
 - \rightarrow Peak leakages often happen at the same time all around the network

BASE INFLOW

- Building block of 300 people
- Water consumption 150 litres / day / person \rightarrow all discharged to sewage system

0.52 l/s

EXTRA FLOW: LEAKAGE

- Baseflow 0.52 l/s
- Amount of extra inflow (leakage into the system): leakage percent 33 %?
- Be careful with the term "leakage percent" ("vuotovesiprosentti")!
 - Usually (and here) refers to the relation: *leakage water / total water*
 - Sometimes: *leakage water / consumer water*

0.26 l/s (→ 0,26 / 0,78 = 0,33)

PEAK USAGE

What is the peak flow to sewer from water consumption?

1.98 l/s

SMALL AREA: PEAK FLOWS

What is the peak flow to sewer from leakage?

Very area dependent

For example, a factor of 4

1.04 l/s

Peak usage 1.98 l/s + normal leakage 0.26 l/s = 2.24 l/s Normal usage 0.52 l/s + peak leakage 1.04 l/s = 1.56 l/s (Peak usage 1.98 l/s + peak leakage 1.04 l/s = 3.02 l/s)

 \rightarrow Peak sewer flow is likely to be caused by peak consumption

LARGER AREA: PEAK FLOWS

But if we combine 5 similar blocks?

Let's say two of them have a peak consumed water, other's have normal. Leaks normal.

Consumed: 1.98 x 2 + 0.52 x 3 + Leak: 0.26 x 5= 6,82 l/s

Storm comes, heavy rain. All areas have a peak leakage, but normal consumption.

Consumed: 0.52 x 5 + Leak: 1.04 x 5= 7,80 l/s

→ Peak sewer flow is likely to be caused by peak leakage Rough simplification, but hopefully makes a point

TASK: MODELING A PUMPING STATION AND PRESSURIZED PIPES

MODEL OVERVIEW

New Model

Model Properties \rightarrow Simulation time 1 day and Report step 60 (s) = 1 min

JUNCTIONS (MANHOLES)

Name	Elevation	Max Depth	Initial Depth	Surcharge Depth
1	0.0	0.0	0.0	100.0
2	4.0	0.0	0.0	100.0
3	5.0	0.0	0.0	100.0
4	6.0	2.0	0.0	0.0
5	2.5	2.0	0.0	0.0
6	1.2	2.0	0.0	0.0

PIPES (CONDUIT)

				Custom				
Name	Start	End	Length	Length	Material	Z1	Z2	Shape
Pipe-1	1	2	35.0	true	90M	0.0	0.0	Force main
Pipe-2	2	3	45.0	true	90M	0.0	0.0	Force main
Pipe-3	3	4	45.0	true	90M	0.0	0.0	Force main
Pipe-4	5	5	40.0	true	200B	0.0	0.0	Circular
Pipe-5	5	6	40.0	true	200B	0.0	0.0	Circular
Pipe-6	6	Outfall	40.0	true	200B	0.0	0.0	Circular

PUMPCURVE

Model \rightarrow Curve \rightarrow New Model \rightarrow Pump Definitions \rightarrow New \rightarrow *pumpCurve*

Name	Start	End	Open	Pump Definition	Startup Depth	Shutoff Depth
Pump-1	Storage-Unit	1	Ltrue	Pump Definition-1	1	0.4
Pump-2	Storage-Unit	1	Ltrue	Pump Definition-1	1.2	0.4

STORAGE UNIT & DEMAND

Name	Elevation	Max Depth	Initial Depth	areaConstant	DWF
.					0.00
Storage-Unit	0.0	2.0	0.0	2.0	0.26
	_				
Name	baseDemand				Extra flow
	0.50				
Jemana	0.52				

Connect to storage unit

Mika Kuronen / Fluidit Oy / mika.kuronen@fluidit.fi

RESULTS

Mika Kuronen / Fluidit Oy / mika.kuronen@fluidit.fi

ESSENTIAL RESULTS IN SEWER MODELING

SEWER NETWORK RESULTS

- Total flows
- Flow (max)
- Velocity (avg, max)
- Depth (water level in manholes & tanks & pipes, pressure in pressurized pipes)
- Overflow
- (Slope)
- Capacity
 - Fraction of the pipe cross sectional area covered by water
- Free capacity (min)
 - Smallest flow (I/s) you can add to the pipe without reaching capacity = 1
- Electric efficiency
- Daily electric energy

FEW LAST WORDS

THINK FORWARD – SEWER AND STORM

SOME TIPS

- Remember, results are momentary results at reporting time step
 - Things that happen between reporting time steps are not observed
 - (Use small enough time step, as it is possible in these small networks)
- If a junction has more pressure than its *surcharge depth*, flooding occurs (water leaves model)
- In pressurized pipes, make several junctions to the pressure line to get elevations right
 - Velocity -result is better taken **not** from the last pipe, as its end's cross section might not be full of water
 - (and in general be a bit careful with pressure line results, as conditions in them change fast)
- Use Drawing States and Profile View
- EPASWMM manual covers most calculation/component/parameter issues
 - Almost everything included in EPASWMM is also found in Fluidit Sewer (but not vise versa)
- Information in Wiki is also useful

THANK YOU FOR YOUR TIME

• Let's start modeling!

Bernoulli's Principle Theory - Equation

 $P_1 + \frac{1}{2}\rho V_1{}^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho V_2{}^2 + \rho g h_2$

Where (in SI units)

P= static pressure of fluid at the cross section p= density of the flowing fluid g= acceleration due to gravity; v= mean velocity of fluid flow at the cross section h= elevation head of the center of the cross section with respect to a datum.

