

QUICK TOUR OF FLUIDIT WATER

Aalto University - 2019-02-25

EUR ING PhD MARKUS SUNELA

2019-02-25

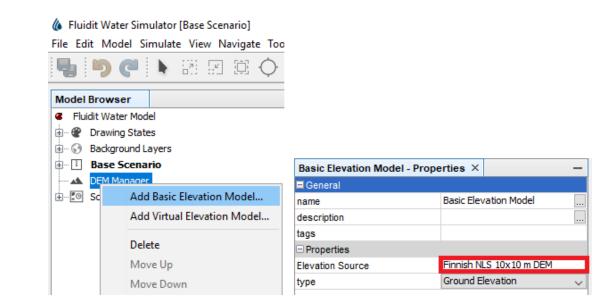
Fluidit Water Model - Properties	A model browser				
Properties Identifiers					
General					
Name	Fluidit Water Model				
Description					
Coordinate Reference System (CRS)	WGS 84 / Pseudo-Mercator (EPSG:3				
Properties					
Flow Accuracy	0,0001				
Head Accuracy	0				
Flow Change Limit	0				
Demand Model	Demand Dependant				
Minimum Pressure	0				
Required Pressure	0				
Pressure Exponent	0,5				
Active Scenario	Base Scenario				
Background Color	[255,255,255]				
Status Check Frequency	2				
Damping Limit	0				
Relative Diffusivity	1				
Emitter Exponent	0,5				
Friction Model	Darcy-Weisbach				
Maximum Status Checks	10				
Default Pump Efficiency	70				
Default Motor Efficiency	85				
Default VSD Efficiency	95				
Relative Specific Gravity	1				
Status Report Type	Full				
Flow Tolerance	0,0001				
Head Tolerance	0,0005				
Quality Tolerance	0,01				
Maximum Iterations	100				
Units	l/s v				
Relative Viscosity	1				
Zero Potential Elevation	0				
Time	1 1 2018 0:00				
Simulation Start Time	1.1.2018 0:00				
Simulation End Time	1.1.2018 23:00				
Report Results Start	1.1.2018 0:00				
Report Step	3600				
Pattern Start	1.1.2018 0:00				
Pattern Step	3600				
Quality Time Step Hydraulic Time Step	3600 3600				

2019-02-25

MODEL PROPERTIES

Things to set up

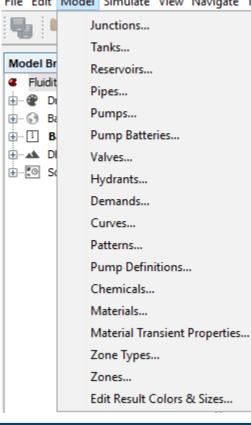
- Units: the most common approach is to use I/s everywhere – flows and demands in I/s, pressures in meters of water column [m], diameters in mm, roughness in mm
- Friction model: Darcy-Weisbach (general friction loss equation)
- Coordinate reference system: the default, global Pseudo-Mercator system is not really metric – use ETRS89-GKxxFIN coordinate systems in Finland
- Simulation time settings: Start time, end time, report start, report step (in seconds) and hydraulic time step (in seconds)


LOAD FINNISH MATERIAL PACK

File Edit Model Simulate	Tools Window Help				
Þ 🍳 🕨 🖓 🔝	Analyses	> & 。の ょ 「、 、 、T Mate			
	Demands	>			
Fluidit Water Model - Propertie	GIS	> View Window			
Properties Identifiers	Material Packs	> Load Finnish Material Pack			
General	Open Model Temporary Directory				
Name		00			
Description	Set Initial Quality Parameters				
Coordinate Reference System (CR	Update Point Elevations	~ 353			
Properties	a				
Flow Accuracy	Plugins				
Head Accuracy	Options	Scotland			
Flow Change Limit		United Kingdom			

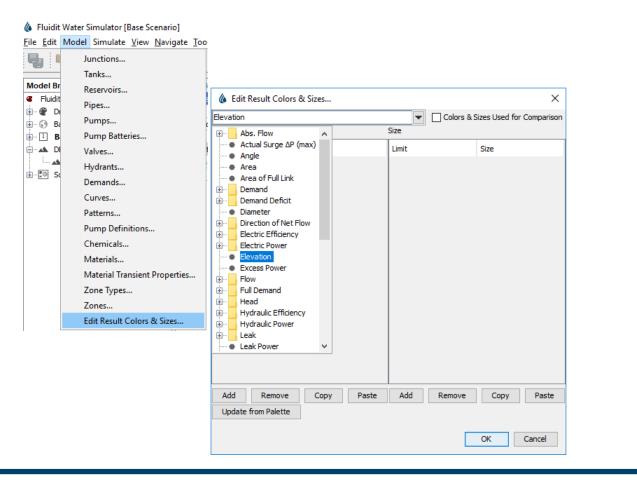
- The Finnish Material Pack includes the common pipe sizes and materials in use in Finland
- Most of materials include rough construction costs
- Materials can be inspected and modified via Model -> Materials... menu

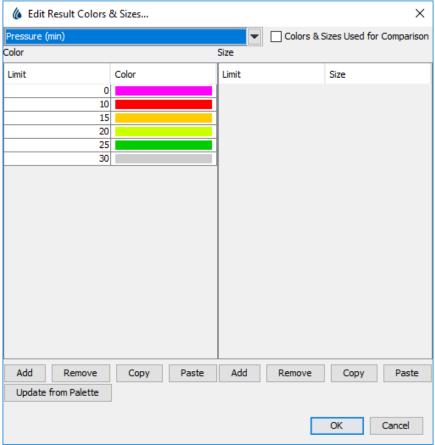
ADD AN ELEVATION MODEL



- Newly created nodes will automatically get elevation (z) from the DEM
- Elevations can be updated later from Tools->Update Point Elevations... (updates selected / all nodes and other points)
- Finnish NLS 10x10 m and 2x2 m grids are available – neither covers the whole country

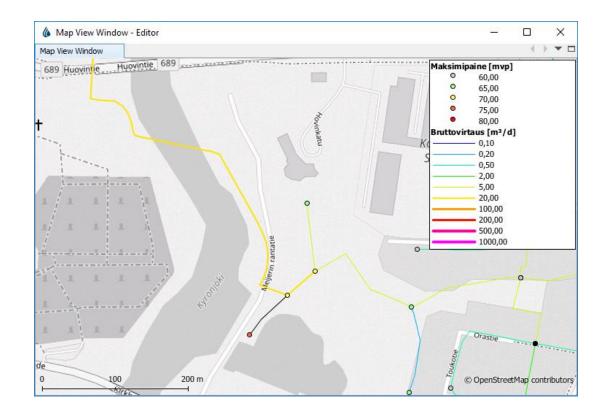
OPEN LIST OF COMPONENTS IN TABLE


Fluidit Water Simulator [Base Scenario] File Edit Model Simulate View Navigate Too



Map View Window	Junctions	×						
Nodes	averageDe	boundary	dailyDemand	demands	description	emitter	ignoreForG	minimumHead
Junc-3873	0,029		2,501	3		0		٠
Junc-15466	0,006		0,479	2		0		٠
Junc-19854	0,008		0,734	4		0		٠
Junc-21324	0		0	0		0		\$
Junction-71	0,021		1,786	5		0		\$
Junc-10875	0,002		0,175	2		0		•
Junc-22755	0,017		1,458	6		0		\$
Junc-5739	0,01		0,894	3		0		\$
Junction-70	0		0	0		0		\$
Junc-6828	0		0	0		0		٠
Junc-20769	0,016		1,422	4		0		\$
Junc-13403	0,015		1,279	5		0		\$
Junc-18032	0,032		2,781	2		0		\$
Junc-19875	0,009		0,781	2		0		٠
Junc-14934	0		0	0		0		٠
Junc-20253	0,021		1,855	2		0		٠
Junc-4294	0,002		0,198	1		0		٠

EDIT RESULT COLORS

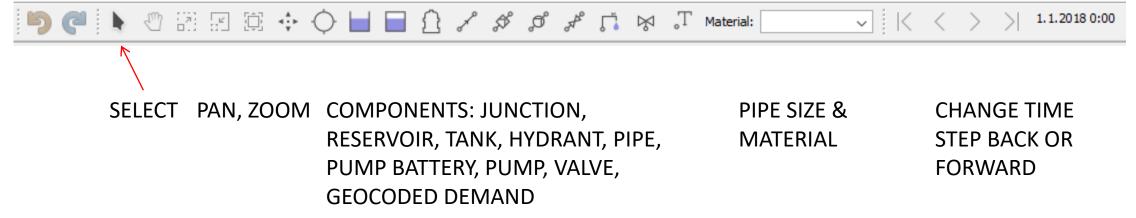

DISPLAY RESULT COLORS

File Edit Model Simulate View Navigate Tools Window Help - 🔠 🖾 🛄 🖬 🕄 🖌 🎤 🥒 📫 Material: St Model Browser Maksimipaine [mvp] [Junctions] - Properties × - 1 -Fluidit Water Model ∧ ⊡ General 🗄 🖤 🍘 Drawing States name Maksimipaine [mvp] 🗄 🔮 Perus Nc description 🗄 👻 Pelkät putket tags 🗄 👻 Zones, vuodot Properties \checkmark 🗄 👻 Paineen purku alavesisäiliöö active [0,0,0] 🗄 👻 Minimipaine color 🖮 🔮 Maksimipaine colorResult \mathbf{T} Pressure (max) Symbols [Symbols] compareToScenario Power Deficit Power In Reservoirs [Reservoirs] exclusive Power Out Tanks [Tanks] filter Pressure Hydrants [Hydrants] pointType Cumulative ΔP 🖉 Maksimipaine [mvp] [Ju size Pressure (avg) Pump Batteries [Pump B sizeInMeters Pressure (max) Pumps [Pumps] sizeResult Pressure (min) Valves [Valves] Pressure (Δ) Bruttovirtaus [m³/d] [P] Surge Pressure (max) Suljetut putket [Pipes] Surge Pressure (min) ÷... Rel. Deficit X Demands [Demands] Reliable Loops Point Components [Point] Required Power Line Components [Line È Setting Area Components [Area ÷ Shaft Power 🗄 👻 Bruttovirtaus Slope 💼 · 👻 Virtausnopeus ÷٠ Specific Energy 🛉 -- 🔗 Virtaussuunnan vaihdokset ÷... Status Yksikköpainehäviöt Surge ΔP (max)

2019-02-25

Fluidit

🕼 Fluidit Water Simulator - C:\Users\vayryja\SharePoint\Kurikan Vesihuolto Oy - KUR-4\C Työ\vj-malli\kuri



EUR ING PhD MARKUS SUNELA

MAIN TOOLBARS

🚯 Fluidit Water Simulator [Base Scenario]

File Edit Model Simulate Tools Window Help

CONTROLLING THE MAP VIEW & DRAWING COMPONENTS

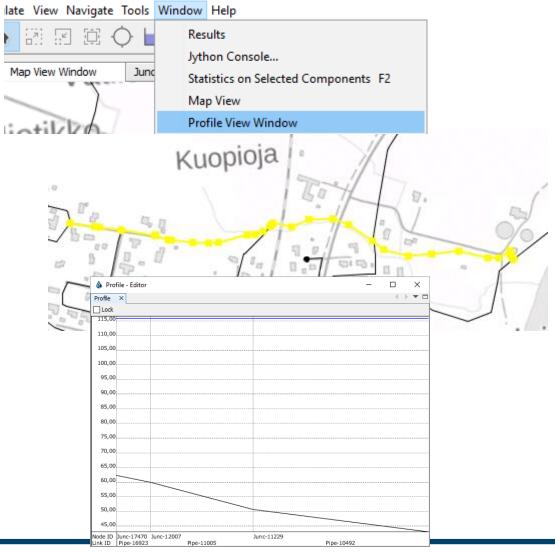
- Pan with middle mouse button or arrow keys
- Zoom using mouse scroll or + and -
- Double-ESC always activates the selection tool
 - Select by clicking or dragging
 - Holding CTRL adds to current selection
 - SHIFT+CTRL removes from current selection
 - Selection is reflected in component tables
- Component properties from selection are displayed dynamically in properties window. Double clicking on component opens properties in a new window
- Right clicking opens context menu

- First draw nodes: choose desired tool and click on map
- Choose pipe size and material (also activates the pipe drawing tool)
 - Start from a node by clicking or CTRL click to create a junction automatically
 - Clicking adds vertices
 - Backspace removes last vertex
 - Esc cancels
 - End by clicking on another node or CTRL click to create a new junction or split existing link
 - It's possible to zoom and pan while drawing

VIEWING SIMULATION RESULTS

- On map using controls in Drawing states / Visualizers + Model->Edit Colors and Sizes...
- Most important results in tool tips
- Graphically using Result View Window or component context menu: Show Result
- Tabularly using:
 - Statistics from Window->Selected Components (F2)
 - Results from component property window *Results-tab*
- More complex analysis possible using *Schematics*

2019-02-25



CREATING A HYDRAULIC PROFILE (GRADE LINE)

- Open Profile View Window
- Select start node by clicking it
- Select end node by CTRL clicking it
- Now that you have two nodes selected, right clicking the map view shows Find Best and Find Shortest Route between nodes – select either
- Selects all links between the nodes
- Left click on the profile and choose properties to change what is shown

2019-02-25

