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Motivation

• Design of supply and sewage networks
• Also relates to pipe flows e.g. in industry
• Understand the physical basis of network modelling



Contents

• Basic hydraulics
• Determining resistance coefficients
• Approaches to practical problems
• Management of pressure transients

• Hints for the assignment



BASIC HYDRAULICS



Basic principles

• Continuity eq. 
• Conservation of momentum (flow rate) ρQv
• Conservation of energy (Bernoulli eq.) 
• Transport equations for substances

Force = rate of change of momentum

�𝐹𝐹 = ρQ(v2−v1)



Bernoulli eq. 

• for steady state computations
• viscous effects or turbulence not explicitly considered -> 

extra coefficients and approaches for determining
energy losses caused by e.g. friction

Large
reservoir losses
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Bernoulli computation for a manhole
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Determination of head loss hf for pipe
flows
• Laminar flows (Poiseuille 1841)

– Not affected by pipe roughness
– L = pipe length, D= pipe diameter

• Turbulent flows (Darcy-Weisbach ca. 1850)

– Depends on pipe roughness (friction factor f)
– Head loss ~ velocity squared

g
v

D
Lfhf 2

2

=

232
gD
Lvhf ν=



Flow from reservoir to atmosphere and 
flow between reservoirs
• With Bernoulli eq.: 
• For pipe flows the loss terms are important

- vs. discharge through a small orifice, for which

• For flow between reservoirs, 
VA=VB=0 and 

losses local
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Branching and parallel pipelines

Need as many equations as there are unknowns
-> Bernoulli eq. for each flow path + continuity eq. 
Q1+Q2=Q3

• For each flow path
losses local  losses head +=Z



Local losses

• Local/minor losses caused by
– expansions and contractions (changes in pipe cross-section)
– manholes
– branches
– valves
– bends

• Can be computed through velocity head and loss
coefficient

– ξ-coefficients for different situations can be found in reference
tables
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DETERMINING RESISTANCE
COEFFICIENTS



Boundary layer
• Pipe flows are affected by pipe walls
• In turbulent flows, the flow is laminar at a small

distance from pipe wall
• δ = thickness of boundary layer
• δL = thickness of laminar sublayer
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Categories of pipe flow for the
determination of the resistance coefficient
• Laminar: Re<2000
• Transitional: 2000<Re<4000
• Turbulent: Re>4000

- smooth turbulent
- transitional turbulent
- rough turbulent

Flow type Re for pipe flow Re for open channel
flow

Laminar < ~2000 < ~500
Transitional 2000 < Re < 4000 500 < Re < 2000
Turbulent >~ 4000 > ~2000

Re=vD/ν
Where ν is kinematic viscosity



Categories of turbulent flows according
to pipe roughness
• Roughness values (k) compiled for different materials

• Flow is categorized according to the relationship between k and 
thickness of the laminar sublayer



Reynolds roughness number for 
categorizing turbulent flows
• Flows are categorized according to the k/D value or

Reynolds roughness number (Re*)

• Re* < 4: smooth turbulent flow
• 4 < Re* < 60: transitional turbulent flow
• Re* > 60: rough turbulent flow
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Moody 
chart
Experiments of Nikuradse
ca 1930



Friction factor f for pipe flows

• Laminar flow
(from Poiseuille & Darcy)

• Turbulent flow
– smooth (Prandl), Re*<4 

– rough (Prandl)

– generally (Colebrook-White)

– generally, ~ 5% accuracy (Moody)

+ a number of newer approximations
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APPROACHES TO PRACTICAL
PROBLEMS



Simplified/empirical formulae for computing
flow velocity
• Blasius for Re*<4

• Hazen-Williams for 4<Re*<60

• Manning eq. for Re*>60 and for gravity flows

𝑣𝑣 = 75𝐷𝐷5/7𝑆𝑆𝐹𝐹4/7



Hazen-Williams eq. for transitional
turbulent flows
• for 4<Re*<60

cH =Hazen-Williams coefficient
• reasonably accurate for pipes with D>0.15 m, v<3 m/s 

and cH>100 
• mainly used for determining head losses in supply

networks
• cH depends on flow velocity, pipe diameter and material
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Manning eq. for rough turbulent
flows
• Manning (1889)

– where R = A/P is hydraulic radius  R = D/4 for circular pipes

• Darcy-Weisbach (f) and Manning coefficients (n) are
related

• Used mainly for gravity flows
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Pipe networks

• Equations needed for the solution
– At each node, the continuity eq. must hold

– the energy losses between two nodes must be identical for all
”routes”

• Modeling software
• Manually solvable through Hardy-Cross method

(assignment)

0=∑Q



Hardy-Cross-method: determining
discharges iteratively (1/2)
1. Guess discharges and directions in different pipes so that

at nodes
2. Compute hf in each pipe using the guessed discharge and e.g. 

Hazen-Williams eq. 

3. Compute total head loss in each loop by taking into
account the flow direction
-e.g. h for loop 1:

h=hf1+hf2+hf3-hf4-hf5
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Hardy-Cross-method: determining
discharges iteratively (2/2)
4. If guessed discharges are correct, h~0 and iteration

ends
If h≠0, start iteration. 
Correct each discharge by

- in the example

5. Repeat steps 2-4 with new discharges Q+ΔQ for each
loop in turn until h~0
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(Derivation of Hardy-Cross method)

• We denote hf=KQ2. 
• ΔQ is solved from the approximation:

where the losses for the corrected discharges in the
clockwise direction (c) (Q+ΔQ) and anti-clockwise
direction (a) (Q-ΔQ) are summed

• The solution is
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3) Computing 
the losses and 
iteration: loop 1 
> correct the
value for the
shared pipe BE
to loop 2 -> 
second iteration
round using the
corrected
discharges from
last round

Example: Determining disharcges when
the K coefficient is known 1/2
In this example we denote r=K so that
hf=rQ2 , 
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Example: Determining discharges when
the r coefficient is known 2/2

In this example we
denote hf=rQ2 , 
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4) Iteration continues until h~0 in all loops

5) Final solution, with discharges and directions
changed compared to the original guess

(http://www.engineering.uiowa.edu/~water/handouts/Hardy-Cross-1-Soln.pdf)



Design computations for gravity sewers

• Manning eq. for uniform flow (i.e., bed slope = friction
slope)

• Bernoulli eq. for gradually-varied flow
– atmospheric pressure
– loss terms e.g. with Manning eq. using friction slope

• Minimum slopes/velocities ->self-cleansing
• To reduce energy losses
• Manholes should be designed so that flow passes them

smoothly



MANAGEMENT OF PRESSURE
TRANSIENTS



Pressure transients

• Pressure transient= hydraulic transient= surge
• Result from any change in the steady-state flow

conditions in a pipeline
-> pressure waves propagating with the velocity of 
sound
-> dissipated through damping/friction
-> a new steady-state

• Caused by e.g.:
– Pump startup/shutdown/trip
– Valve opening/closing
– Main break



Effects

• Damage to pumps, devices and pipes
• Unwanted mixing of waters
• Intrusion of contaminated water
• Cavitation
-> understanding and controlling important

• Most severe effects at pump stations, control valves, in 
high-elevation areas, in locations with low static 
pressures, and in remote locations that are distanced 
from overhead storage



Note: the example
presents a frictionless
system

In real pipelines, 
transients are
dissipated by friction



Dissipation of transients



Joukowsky relation

• According to the
momentum principle, 

where c=sonic speed
(depends on pipe
material and elasticity)
Δv = change in velocity

∆𝑃𝑃𝑃𝑃 = 𝜌𝜌∆𝑥𝑥 �∆𝑄𝑄
∆𝑡𝑡

- Very simplified, applies only to simple cases where the valve is closed quickly 
compared to the time required for a pressure wave to travel the length of the pipe

∆𝑃𝑃 = 𝜌𝜌𝜌𝜌∆𝑣𝑣 After Δt

�𝐹𝐹 = ρQ(v2−v1)



Transient conditions mitigated through

• Higher pressure class pipes
• Rerouting of pipes
• Improvement in valve and pump control/operation 

procedures
• Limiting the pipeline velocity
• Reducing the wave speed (e.g., different pipe material)
• Surge protection devices



Surge protection devices

• Minimize flow fluctuations e.g. by
– delaying the change of flow (e.g. storing water)
– discharging water from the line 

• For both minimum & maximum pressures: surge tanks 
(e.g. storage tanks), air chambers, pump bypass lines

• Controlling maximum pressures: 
– pressure-relief valves, surge anticipation valves, or 

combinations 

• Controlling minimum pressures:
– increasing pump inertia, air-release/vacuum valves, or 

combinations



Open surge tank (aaltoilusäiliö) 

• convert kinetic energy into potential energy
• at locations where normal static pressure heads are 

small (or tall tanks are acceptable) 
• prevent both high and low pressures and cavitation 
• water towers

(Wang et al., 
doi:10.3390/w7084446)

https://youtu.be/HIK5LYvDqYA

http://dx.doi.org/10.3390/w7084446


Air chamber/ surge vessel/ closed surge
tank
• a chamber in which air elastically compresses and expands to 

regulate the flow 
• typically positioned downstream of pumps to protect the pumps 

against trips but can be installed anywhere along a line regardless 
of normal pressure head

• respond faster and allow a wider range of pressure fluctuation than 
open surge tanks

(Wang et al., 
doi:10.3390/w7084446)

https://www.youtube.com/watch?v=YgjRZq70GR4

http://dx.doi.org/10.3390/w7084446


Check valves (takaiskuventtiili)

• allow flow only in one direction and closes when flow 
reversal is impending

• a substantial backflow may occur before closure 
• together with other devices
• can be used to isolate high pressure waves from 

reaching a section of a pipeline



Air chamber at pump discharge side 

(Chaudhry 2014)



Pump bypass lines (ohitukset)

• can be installed around the pumps in low-head pumping 
systems that have a positive suction head 
– allow water to be drawn into the discharge line following power 

failure 
– activated when the pump suction head exceeds the discharge 

head

• prevent high-pressure buildup on the pump suction side 
and cavitation on the pump discharge side



• eject water out of the 
system when the 
pressure reaches a 
preset value -> prevent 
excessive high-pressure 
surges 

• open and close at 
prescribed rates over 
which the designer may 
have some control

Pressure-relief valves
(varo/ylipaineventtiili) 

(Industrial Valve Store)



Surge anticipation valves

• similar to pressure relief 
valves, but also open 
when a downsurge occurs 
-> accommodate the 
following upsurge

• complete a cycle of 
opening and closing 

• can solve the problem of 
upsurge at the pump due 
to reverse flow or wave 
reflection

• can worsen low pressure 
conditions



Vacuum + air-release valves

• Can be installed at high 
points in a pipeline

• Vacuum valves admit air 
into the pipe when 
pressure drops below 
atmospheric

-> prevent cavitation
• Air release valves expel air 

when pressure exceeds 
atmospheric pressure



Control of change in pump speed

• frequency controlled pumps (taajuusmuuttaja)
– have variable frequency drives = a system for controlling the 

pump speed

• flywheels = e.g. a large-diameter steel plate attached to 
the pump motor
– the provided rotational energy reduces pump speed gradually



Locations for surge control devices

(Boulos 2005)



Further materials…

• AWWA. 2012 Computer Modeling of Water Distribution Systems - Manual 
of Water Supply Practices, M32 (3rd Edition).

• Bizier, P. 2007. Gravity Sanitary Sewer Design and Construction (2nd 
Edition).

• Boulos, P. et al. 2005. Hydraulic transient guidelines for protecting water 
distribution systems. Journal AWWA 97(5): 111-124.

• Chaudry, M.H. 2014 Applied Hydraulic Transients. 3rd edition. Springer. 
• Hamill, L . 2011 Understanding hydraulics. 3rd edition. Palgrave Macmillan.
• RIL 1986. Paineisku vesihuoltoverkoissa. RIL 168-1986.  Suomen

Rakennusinsinöörien Liitto.
• Wang et al. 2015. Simulation of Water Level Fluctuations in a Hydraulic 

System Using a Coupled Liquid-Gas Model. Water 2015, 7, 4446-4476; 
doi:10.3390/w7084446
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