

Basics of hydraulics & management of pressure transients

WAT-E2110 - Design and Management of Water and Wastewater Networks L, 2019 28 Feb 2019

D.Sc. (Tech.) Kaisa Västilä

Motivation

- Design of supply and sewage networks
- Also relates to pipe flows e.g. in industry
- Understand the physical basis of network modelling

Contents

- Basic hydraulics
- Determining resistance coefficients
- Approaches to practical problems
- Management of pressure transients
- Hints for the assignment

BASIC HYDRAULICS

Basic principles

- Continuity eq.
- Conservation of momentum (flow rate) pQv
- Conservation of energy (Bernoulli eq.)
- Transport equations for substances

Force = rate of change of momentum

$$\sum F = \rho Q(v_2 - v_1)$$

Bernoulli eq.

$$z_1 + \alpha \frac{v_1^2}{2g} + \frac{P_1}{\rho g} = z_2 + \alpha \frac{v_2^2}{2g} + \frac{P_2}{\rho g} + \text{losses}$$

- for steady state computations
- viscous effects or turbulence not explicitly considered -> extra coefficients and approaches for determining energy losses caused by e.g. friction

Bernoulli computation for a manhole

$$z_1 + \alpha \frac{v_1^2}{2g} + \frac{P_1}{\rho g} = z_2 + \alpha \frac{v_2^2}{2g} + \frac{P_2}{\rho g} + \text{losses}$$

Determination of head loss h_f for pipe flows

Laminar flows (Poiseuille 1841)

$$h_f = 32v \frac{Lv}{gD^2}$$

- Not affected by pipe roughness
- L = pipe length, D= pipe diameter
- Turbulent flows (Darcy-Weisbach ca. 1850)

$$h_f = f \frac{L}{D} \frac{v^2}{2g}$$

- Depends on pipe roughness (friction factor f)
- Head loss ~ velocity squared

Flow from reservoir to atmosphere and flow between reservoirs

• With Bernoulli eq.:

$$Z = V_B^2 / 2g + f \frac{L}{D} \frac{v^2}{2g} + \text{local losses}$$

- For pipe flows the loss terms are important
 - vs. discharge through a small orifice, for which $H = V_B^{-2}/2g$

- For flow between reservoirs,
 - $V_A = V_B = 0$ and Z = head losses + local losses

Branching and parallel pipelines

Need as many equations as there are unknowns

-> Bernoulli eq. for each flow path + continuity eq.

$$Q_1+Q_2=Q_3$$

- For each flow path
 - Z = head losses + local losses

Local losses

- Local/minor losses caused by
 - expansions and contractions (changes in pipe cross-section)
 - manholes
 - branches
 - valves
 - bends
- Can be computed through velocity head and loss coefficient

$$h_p = \xi \frac{v}{2g}$$

 ξ-coefficients for different situations can be found in reference tables

DETERMINING RESISTANCE COEFFICIENTS

Boundary layer

- Pipe flows are affected by pipe walls
- In turbulent flows, the flow is laminar at a small distance from pipe wall
- δ = thickness of boundary layer

Categories of pipe flow for the determination of the resistance coefficient

• Laminar: Re<2000

Transitional: 2000<Re<4000

Turbulent: Re>4000

- smooth turbulent

- transitional turbulent

- rough turbulent

Flow type	Re for pipe flow	Re for open channel flow			
Laminar	< ~2000	< ~500			
Transitional	2000 < Re < 4000	500 < Re < 2000			
Turbulent	>~ 4000	> ~2000			

Re=vD/v Where v is kinematic viscosity

Categories of turbulent flows according to pipe roughness

- Roughness values (k) compiled for different materials
- Flow is categorized according to the relationship between k and thickness of the laminar sublayer

Reynolds roughness number for categorizing turbulent flows

 Flows are categorized according to the k/D value or Reynolds roughness number (Re*)

$$\operatorname{Re}^* = \operatorname{Re}\left(\frac{k}{D}\right)\sqrt{\frac{f}{8}}$$

- Re* < 4: smooth turbulent flow
- 4 < Re* < 60: transitional turbulent flow
- Re* > 60: rough turbulent flow

Moody chart

Experiments of Nikuradse ca 1930

Friction factor f for pipe flows

Darcy:

$$h_f = f \frac{L}{D} \frac{v^2}{2g}$$

 Laminar flow (from Poiseuille & Darcy)

 $f = \frac{64}{Re}$

- Turbulent flow
 - smooth (Prandl), Re*<4
 - rough (Prandl)
 - generally (Colebrook-White)
 - generally, ~ 5% accuracy (Moody)
 - + a number of newer approximations

$$\frac{1}{\sqrt{f}} = 2\log(\text{Re}\sqrt{f}) - 0.8$$

$$\frac{1}{\sqrt{f}} = 2\log\left(\frac{D}{k}\right) + 1.14$$

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{k/D}{3.7} + \frac{2.51}{\operatorname{Re}\sqrt{f}}\right)$$

$$f = 0.0055 \left[1 + \left(20000 \frac{k}{D} + \frac{10^6}{\text{Re}} \right)^{1/3} \right]$$

APPROACHES TO PRACTICAL PROBLEMS

Simplified/empirical formulae for computing flow velocity

- Blasius for Re*<4 $v = 75D^{5/7}S_F^{4/7}$
- Hazen-Williams for 4<Re*<60
- Manning eq. for Re*>60 and for gravity flows

Hazen-Williams eq. for transitional turbulent flows

for 4<Re*<60

$$h_f = \frac{Lv^{1.852}}{(0.355C_H)^{1.852}} \longleftrightarrow v = 0.355C_H S_F^{0.54} D^{0.63}$$

c_H =Hazen-Williams coefficient

- reasonably accurate for pipes with D>0.15 m, v<3 m/s and c_H>100
- mainly used for determining head losses in supply networks
- c_H depends on flow velocity, pipe diameter and material

Manning eq. for rough turbulent flows

Manning (1889)

$$v = \frac{1}{n} R^{2/3} S_f^{1/2}$$

$$S_f = \frac{h_f}{L}$$

area: $A = \pi(D/2)^2$ wetted perimeter: $P = 2\pi(D/2)$

- where R = A/P is hydraulic radius $\rightarrow R = D/4$ for circular pipes
- Darcy-Weisbach (f) and Manning coefficients (n) are related

$$n = \sqrt{\frac{f}{8g}} R^{1/3}$$

Used mainly for gravity flows

Pipe networks

- Equations needed for the solution
 - At each node, the continuity eq. must hold

$$\sum Q = 0$$

- the energy losses between two nodes must be identical for all "routes"
- Modeling software
- Manually solvable through Hardy-Cross method (assignment)

Hardy-Cross-method: determining discharges iteratively (1/2)

- 1. Guess discharges and directions in different pipes so that $\sum Q = 0$ at nodes
- 2. Compute h_f in each pipe using the guessed discharge and e.g. Hazen-Williams eq.

$$h_f = \frac{Lv^{1.852}}{(0.355c_H)^{1.852}d^{1.167}}$$

3. Compute total head loss $h=\sum_{g\in S} h_g$ in each loop by taking into account the flow direction -e.g. h for loop 1:

$$h=h_{f1}+h_{f2}+h_{f3}-h_{f4}-h_{f5}$$

Q1 Q2 Q6 Q5 Q4 Q3 Q3 Q4 Q3 Q4 Q3 Q4 Q4 Q5 Q4 Q5 Q4 Q5 Q4 Q5 Q4 Q5 Q5 Q4 Q5 Q4 Q5 Q5 Q4 Q5 Q5 Q5 Q5 Q5 Q6 Q7 Q6 Q7 Q7 Q7

Hardy-Cross-method: determining discharges iteratively (2/2)

 $h = \sum_{i} h_{f}$

4. If guessed discharges are correct, h~0 and iteration ends

If h≠0, start iteration.

Correct each discharge by

$$\Delta Q = -\frac{h}{2\sum \frac{h_f}{O}} \quad \begin{array}{c} \text{direction in} \\ \text{all} \\ \text{computations} \\ \text{!!} \end{array}$$

Note the flow direction in

- in the example
$$\Delta Q=-\frac{h}{2*(\frac{h_{f1}}{Q_1}+\frac{h_{f2}}{Q_2}+\frac{h_{f3}}{Q_3}-\frac{h_{f4}}{Q_4}-\frac{h_{f5}}{Q_5})}$$

5. Repeat steps 2-4 with new discharges $Q+\Delta Q$ for each loop in turn until h~0

(Derivation of Hardy-Cross method)

- We denote h_f=KQ².
- ΔQ is solved from the approximation:

$$\sum_{c} K(Q + \Delta Q)^{2} - \sum_{a} K(Q - \Delta Q)^{2} \approx$$

$$\sum_{c} K(Q^{2} + 2\Delta Q * Q) - \sum_{a} K(Q^{2} - 2\Delta Q * Q) \approx 0$$

where the losses for the corrected discharges in the clockwise direction (c) (Q+ Δ Q) and anti-clockwise direction (a) (Q- Δ Q) are summed

• The solution is

$$\Delta Q = -\frac{h}{2\sum KQ} = -\frac{h}{2\sum \frac{h_f}{Q}}$$

Example: Determining disharcges when

the K coefficient is known 1/2 guessed

1) Starting point

Pipe Network

2) Guessed Q and directions

3) Computing the losses and iteration: loop 1 > correct the value for the shared pipe BE to loop 2 -> second iteration round using the corrected discharges from last round

		DA	3	-7.00	-147.00	42.00	X	-4.01
			>	Σ	-293.00	98.00	2.99	
Iteration	Loop	Pipe	r	Q_j	$rQj Q_j $	$2r Q_j $	ΔQ	Q_J
1	2	BC	10	5.00	250.00	100.00		2.92
		CF	5	1.00	5.00	10.00		-1.08
		FE	3	-1.00	-3.00	6.00		-3.08
		EB	2	-0.99	-1.96	3.96		-3.07
				Σ	250.04	119.96	-2.08	
				Guess			(Corrected
Iteration	Loop	Pipe	r	Q_j	$rQj Q_j $	$2r Q_j $	∆Q	Q_j
2	1	AB	1	5.99	35.88	11.98		6.57
		BE	2	3.07	18.90	12.30		3.65
		ED	3	-4.01	-48.25	24.06		-3.43
		DA	3	-4.01	-48.25	24.06		-3.43
				Σ	-41.71	72.40	0.58	
Iteration	Loop	Pipe	r	Q_j	$rQj Q_j $	$2r Q_j $	ΔQ	Q_j
2	2	вс	10	2.92	85.01	58.31		2.68
		CF	5	-1.08	-5.88	10.84		-1.32
		FE	3	-3.08	-28.54	18.51		-3.32
		EB	2	-3.65	-26.65	14.60		-3.88
				Σ	23.94	102.26	-0.23	

Guess

Pipe

2r|Q,|

6.00

 $Q_j[Q_j]$

9.00

Example: Determining discharges when the r coefficient is known 2/2

		Guess				Corrected		
Iteration	Loop	Pipe	r	Q_j	$rQj Q_j $	$2r Q_j $	ΔQ	Q_j
3	1	AB	1	6.57	43.11	13.13		6.53
		BE	2	3.88	30.18	15.54		3.85
		ED	3	-3.43	-35.38	20.60		-3.47
		DA	3	-3.43	-35.38	20.60		-3.47
				Σ	2.53	69.88	-0.04	
Iteration	Loop	Pipe	r	Q_{j}	$rQj Q_j $	$2r Q_j $	∆Q	Q_J
3	2	BC	10	2.68	71.91	53.63		2.68
		CF	5	-1.32	-8.69	13.18		-1.32
		FE	3	-3.32	-33.04	19.91		-3.32
		EB	2	-3.85	-29.62	15.39		-3.85
				Σ	0.56	102.12	-0.01	

				Guess			Co	rrected
Iteration	Loop	Pipe	r	Q_j	$rQj Q_j $	$2r Q_j $	ΔQ	Q_J
4	1	AB	1	6.53	42.64	13.06		6.53
		BE	2	3.85	29.70	15.41		3.85
		ED	3	-3.47	-36.13	20.82		-3.47
		DA	3	-3.47	-36.13	20.82		-3.47
				Σ	0.08	70.1	0.00	
Iteration	Loop	Pipe	r	Q_j	$rQj Q_j $	$2r Q_j $	∆Q	Q_J
4	2	вс	10	2.68	71.61	53.52		2.68
		CF	5	-1.32	-8.76	13.24		-1.32
		FE	3	-3.32	-33.15	19.94		-3.32
		EB	2	-3.85	-29.68	15.41		-3.85
				Σ	0.02	102.11	0.00	

In this example we denote $h_f=rQ^2$,

$$\Delta Q = -\frac{h}{2\sum rQ} = -\frac{h}{2\sum \frac{h_f}{Q}}$$

5) Final solution, with discharges and directions changed compared to the original guess

Design computations for gravity sewers

- Manning eq. for uniform flow (i.e., bed slope = friction slope)
- Bernoulli eq. for gradually-varied flow
 - atmospheric pressure
 - loss terms e.g. with Manning eq. using friction slope
- Minimum slopes/velocities ->self-cleansing
- To reduce energy losses
- Manholes should be designed so that flow passes them smoothly

MANAGEMENT OF PRESSURE TRANSIENTS

Pressure transients

- Pressure transient= hydraulic transient= surge
- Result from any change in the steady-state flow conditions in a pipeline
 - -> pressure waves propagating with the velocity of sound
 - -> dissipated through damping/friction
 - -> a new steady-state
- Caused by e.g.:
 - Pump startup/shutdown/trip
 - Valve opening/closing
 - Main break

Effects

- Damage to pumps, devices and pipes
- Unwanted mixing of waters
- Intrusion of contaminated water
- Cavitation
- -> understanding and controlling important
- Most severe effects at pump stations, control valves, in high-elevation areas, in locations with low static pressures, and in remote locations that are distanced from overhead storage

Note: the example presents a frictionless system

In real pipelines, transients are dissipated by friction

Dissipation of transients

Joukowsky relation

$$\sum F = \rho Q(v_2 - v_1)$$

According to the momentum principle,

$$\Delta PA = \rho \Delta x \frac{\Delta Q}{\Delta t}$$

$$\Delta P = \rho c \Delta v$$
where c=sonic speed
(depends on pipe
material and elasticity)
$$\Delta v = \text{change in velocity}$$

- Very simplified, applies only to simple cases where the valve is closed quickly compared to the time required for a pressure wave to travel the length of the pipe

Transient conditions mitigated through

- Higher pressure class pipes
- Rerouting of pipes
- Improvement in valve and pump control/operation procedures
- Limiting the pipeline velocity
- Reducing the wave speed (e.g., different pipe material)
- Surge protection devices

Surge protection devices

- Minimize flow fluctuations e.g. by
 - delaying the change of flow (e.g. storing water)
 - discharging water from the line
- For both minimum & maximum pressures: surge tanks (e.g. storage tanks), air chambers, pump bypass lines
- Controlling maximum pressures:
 - pressure-relief valves, surge anticipation valves, or combinations
- Controlling minimum pressures:
 - increasing pump inertia, air-release/vacuum valves, or combinations

Open surge tank (aaltoilusäiliö)

- convert kinetic energy into potential energy
- at locations where normal static pressure heads are small (or tall tanks are acceptable)
- prevent both high and low pressures and cavitation
- water towers

Air chamber/ surge vessel/ closed surge tank

- a chamber in which air elastically compresses and expands to regulate the flow
- typically positioned downstream of pumps to protect the pumps against trips but can be installed anywhere along a line regardless of normal pressure head
- respond faster and allow a wider range of pressure fluctuation than open surge tanks

Check valves (takaiskuventtiili)

- allow flow only in one direction and closes when flow reversal is impending
- a substantial backflow may occur before closure
- together with other devices
- can be used to isolate high pressure waves from reaching a section of a pipeline

Air chamber at pump discharge side

Pump bypass lines (ohitukset)

- can be installed around the pumps in low-head pumping systems that have a positive suction head
 - allow water to be drawn into the discharge line following power failure
 - activated when the pump suction head exceeds the discharge head
- prevent high-pressure buildup on the pump suction side and cavitation on the pump discharge side

Pressure-relief valves (varo/ylipaineventtiili)

- eject water out of the system when the pressure reaches a preset value -> prevent excessive high-pressure surges
- open and close at prescribed rates over which the designer may have some control

(Industrial Valve Store)

Surge anticipation valves

- similar to pressure relief valves, but also open when a downsurge occurs
 -> accommodate the following upsurge
- complete a cycle of opening and closing
- can solve the problem of upsurge at the pump due to reverse flow or wave reflection
- can worsen low pressure conditions

Vacuum + air-release valves

- Can be installed at high points in a pipeline
- Vacuum valves admit air into the pipe when pressure drops below atmospheric
- -> prevent cavitation
- Air release valves expel air when pressure exceeds atmospheric pressure

Control of change in pump speed

- frequency controlled pumps (taajuusmuuttaja)
 - have variable frequency drives = a system for controlling the pump speed
- flywheels = e.g. a large-diameter steel plate attached to the pump motor
 - the provided rotational energy reduces pump speed gradually

Locations for surge control devices

Further materials...

- AWWA. 2012 Computer Modeling of Water Distribution Systems Manual of Water Supply Practices, M32 (3rd Edition).
- Bizier, P. 2007. Gravity Sanitary Sewer Design and Construction (2nd Edition).
- Boulos, P. et al. 2005. Hydraulic transient guidelines for protecting water distribution systems. Journal AWWA 97(5): 111-124.
- Chaudry, M.H. 2014 Applied Hydraulic Transients. 3rd edition. Springer.
- Hamill, L. 2011 Understanding hydraulics. 3rd edition. Palgrave Macmillan.
- RIL 1986. Paineisku vesihuoltoverkoissa. RIL 168-1986. Suomen Rakennusinsinöörien Liitto.
- Wang et al. 2015. Simulation of Water Level Fluctuations in a Hydraulic System Using a Coupled Liquid-Gas Model. Water 2015, 7, 4446-4476; doi:10.3390/w7084446

