THE MARCH 11™ SESSION

* Energy in water utilities (20 min)

* Introduction to pumping and pump design (45 min)

* Pump modeling exercise (30 min)

* Break (10 min)

* Introduction to optimization (25 min)
e Optimization in water sector (25 min)

* Modeling exercise — energy, leakage, pumping (30 min)
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OPTIMIZATION OF WSS
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LEARNING OUTCOMES

* List three use cases for optimization in WSS
* List commonly used constraints and their values in WSS optimization
* Describe the complexities associated with optimization of WSS

* Describe how genetic algorithm works
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THREE SIDES OF WSS OPTIMIZATION

* Design optimization
* Part of everything the engineers normally do manually: assessing different options and choosing the best

* Planning and optimizing new areas, pipes, rehabilitation projects, tanks, stations, pumps, control systems,
water resources management etc.

* Operational optimization

e Offline optimization

* Best possible solutions are found out using optimization algorithms or other methods under a limited number of scenarios
before hand, relative volumes pumped from different sources, pumping settings, preparing for exceptions, pipe bursts

* Online optimization

* Optimization program calculates the best solution dynamically and continuously: for example the settings for all presssure
booster stations or water sources

* Can be controlling or an expert system

* Calibration
* Change model parameters so that the simulated results match the measured
* Locating leaks, closed valves, general hydraulic or quality calibration

[ ] [ ]
«‘ FI u I d It 2019-03-11 EUR ING PhD MARKUS SUNELA




DIFFERENT LEVELS OF ACTIONS TO REDUCE
ENERGY USE

* Changing control system parameters and settings

. Cons_tanltl, smooth pumping, using of multiple directions at once, utilizing the sources close to demand
maximally

* Fully automatic control
* Optimizing parallel pumping, processes

* Replacing pumps
 Installing variable speed drives
* Installing new pumps, possibly multiple differently sized pumps

* Changes in the network
* Pressure re-zoning
* Adding more elevated storage
* Restructuring storage: lowering or rising the tanks
 Fixing, constructing or redimensioning of pipes

[ | [ ]
«‘ FI u Id It 2019-03-11 EUR ING PhD MARKUS SUNELA



COST VS BENEFIT

AFTER SOME POINT PUTTING
MORE EFFORT DOESN’T
REALLY PAY BACK ANYMORE

BENEFIT

COMPLEXITY OR COST
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TYPICAL CONSTRAINTS

* Users

* Pressure level (2—8 bar)
* Pressure difference (<1 bar)
* Quality, especially water age (<4-7 days)

* Network
* Velocity (<0.5-1.0 m/s)
* Unit headloss (<3—5%o)

* Tanks

* Minima and maxima for level, volume and capacity (hours)
* Quality, especially water age (<4-7 days)
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TYPICAL CONSTRAINTS

* Water soures
* Minimum and maximum flow (hourly and daily constraints)
* Minimum running time for pumps and maximum allowed number of pump switches
e Qutlet pressure limit (8—10 bar)
* Pump capacity
 Limits for efficiency, power and specific energy

* Pressure booster stations
* Inlet pressure limit (1 bar)
e Qutlet pressure limit (8—10 bar)
* Pump capacity
* Limits for efficiency, power and specific energy
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WHY OPTIMIZATION IS HARD IN WSS?

* |n pressurized system everything affects everything else
* Even the smallest system has numerous solutions

* Change in controls, outlet pressure or tank volume can cause surprizing cascading
effects

* Network equations cannot be solved analytically and they are non-linear
* Traditional methods cannot be used
* Optimization is computationally intensive

 Evaluating constraints, and often the objective function too, require
hydraulic modeling
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HYDRAULIC MODEL

* Optimization requires the use of a hydraulic model (EPANET, EPASWMM)
* Model solves the energy use and workings of the network for the given solution candidate: objective + constraints

* Model accuracy should reflect the desired goal: typically as accurate as possible, but computational time can limit accuracy

* All pipes, every water user, leakage

* All variable speed drives, motors, pumps, control algorithms In Tower
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EPANET

Public domain, basis for practically all commercial solutions: WaterCAD, Fluidit Water,
MikeUrban...

Under active scientific research

Has its limitations tough
* Parallel pumping and variable speed control
* Inaccuracies in efficiency calculations

* Limited possibilities for controlling the network
+—Not-thread-safe-nrorre-entrant-(implemented in up-coming 2.2)

A lot of fixes and feature present in literature
* Sunela 2015b, 2015c¢, 2016, 2017
* Marchi & Simpson 2013

* Easy to use in own code (C, Java, Python, C#...) and in, for example, Matlab and Excel
* Some more recent developments available through OpenWaterAnalytics project
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HOW TO OPTIMIZE?

Hydraulic
Model

- Fitness
[> Optimization Function /
Goal
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ONLINE OPTIMIZATION

* Requires two-way connection between SCADA and Measurements

optimization tool Water SCADA and
Network Controls Control

e Typically optimization is done once an hour, for the
next 24 h

* |nitial tank levels Reporting

* Demand forecast

* Optimal settings for every optimizable station for Demand

each hour Opté?liz;]:on Forecast
9 Model

* Constraint definitions
* Errors and problems with data

Measurements

Hydraulic g Control

Network Controls SyStem
Model Model
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EXAMPLE IMPLEMENTATION
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Sunela 2017
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OPTIMIZATION METHODS FOR WSS

* WSS optimization is NP hard problem — only approximate solutions exist

* Traditional optimization methods (LP, NLP, DP...) work poorly, if at all, and
require a lot of time to formulate the problem properly

* Meta-heuristic algorithms are commonly used
* Trajectory based vs population based
* No guarantee of finding the global optimum, but results are “good enough”

* Don’t require analytical solutions or derivatives. Instead the system is treated as
black box, that only returns the objective function value and feasibility (for example

using a hydraulic model). The solutions are made better iteratively using heuristic
methods.

* Require a lot of computational power
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COMPUTATIONAL TIME

* Simulations are relatively slow, and the number of simulations is great

* The significance of computational time is even more apparent in online
applications

* Can be improved using
* Parallel processing — many candidates at once or parallelized simulator
* Hybrid algorithms
e Caching
* Model simplification (surrogate model)
* Multi-level optimization or multi-level evaluation (problem decomposition)
* Probabilistic model building GA (PMBGA)
* Combination of the above

¢ Clever problem formulation to avoid The Curse of Dimensionality: grouping,
decomposition, restricting design variable value ranges, solving deltas/fractions...
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SOME META-HEURISTIC ALGORITHMS

* Evolutionary algorithms (EA)
* Model evolution of biological populations
* Genetic algorithm (GA) is the most commonly used variant

* Swarm algorithms (SA, swarm intelligence)
* Model movement and behavior of insect and animal swarms and colonies

* Most commonly used are particle swarm optimization (PSO) and ant colony
optimization (ACO)

* Others, such as dynamically dimensioned search (DDS)
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PARTICLE SWARM ALGORITHM

Is modeled after swarms of birds and fishes

Population, or swarm, of candidate solutions or particles
* Initially particles are distributed evenly throughout the search base

Every particle has a location and velocity
* Coordinate system is n dimensional, where n is the number of design variables
* Each coordinate is value of a design variable

The velocity for each particle is updated every iteration
* According to simple equations
* The change depends on the particle’s own best result and the best result of the whole swarm
* Location updated based on the velocity

Basic implementation gets easily stuck in local optimum
* A lot of different versions exist
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ANT COLONY OPTIMIZATION

* Modeled after the way how ants optimize the route between food source and colony
* Initially the ants walk randomly

* When food is found, they return to the colony and leave a trail of pheromones

* The next iteration ants are more likely to choose a route with more pheromons

* The more ants choose an route, the more pheromones are excreted and the more likely
it is that other ant choose the route

* The amount of pheromones an ant excretes is depends on the goodness of the solution
* Pheromones evaporate partly every iteration

* Works only with integer valued design variables: every variables in a road junction,
where the range of valid values are the different routes continuing from the junction
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GENETIC ALGORITHM

* Is modeled after evolution — how DNA is evolved
* Population of chromosomes (solution candidate) — each chromosome has multiple genes
(design variables)
* The fitness of each solution is calculated every iteration
* The best or most fit solutions are most likely to reproduce and have descendants in the next
generation
* The chromosomes exchange genes and mutate during the process

* Encoding design variables (genes) into chromosomes

* Most typical solution is using a bit string

* One gene is formed by 1-n bit
* Bit coding is stored in a table (for example pipe diameter coding: 00=63 mm, 01=110 mm, 10=160 mm
and 11=225 mm)

* Integer and real valued genes are possible too, but bitstrings are the most researched
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GENETIC ALGORITHM
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GENETIC ALGORITHM PARAMETERS

* Parameters
* Population size, typically 5-10 times the number of design variables
* Probability of recombination 0.5-0.7
* Probability of mutation typically very small 0.001

. Sﬁme of the chromosomes continue unchanged from one generation to
the next

* Usually 10 to 20 best solutions found so far are saved unchanged in the
population

* Depending on the problem, there can be from tens to hundreds of
thousands of generation and each generation requires a number of
simulations equal to the number of population size
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ARTIFICIAL NEURAL NETWORK (ANN)

* Fitness of a candidate solution can be estimated using, for example, artificial
neural network (for example MOGA-ANN methods)
* In the beginning all solutions are evaluated completely using a model and ANN is taught
* When ANN becomes learned enough, the fitness is firts approximated using the ANN

* If the solution is very good or bad, the actual goodness is simulated using the model, and
ANN is trained some more. Otherwise the ANN’s estimate is used
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RESULTS GET ITERATIVELY BETTER
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LOCATING LEAKS
* DDS + brute force approach for finding

a 2000 m3/d leak

* Minimizing the difference between
measured and simulated pressures
and flows + water tower level

Lempaalantie

* The higher the value, the more
probable location is for the pipe burst

Multivuori

* Not only one answer, but many with
different probabilities!
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