
THE MARCH 11TH SESSION

• Energy in water utilities (20 min)

• Introduction to pumping and pump design (45 min)

• Pump modeling exercise (30 min)

• Break (10 min)

• Introduction to optimization (25 min)

• Optimization in water sector (25 min)

• Modeling exercise – energy, leakage, pumping (30 min)
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OPTIMIZATION OF WSS
Aalto University – 2019-03-11
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LEARNING OUTCOMES

• List three use cases for optimization in WSS

• List commonly used constraints and their values in WSS optimization

• Describe the complexities associated with optimization of WSS

• Describe how genetic algorithm works
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THREE SIDES OF WSS OPTIMIZATION

• Design optimization
• Part of everything the engineers normally do manually: assessing different options and choosing the best
• Planning and optimizing new areas, pipes, rehabilitation projects, tanks, stations, pumps, control systems, 

water resources management etc.

• Operational optimization
• Offline optimization

• Best possible solutions are found out using optimization algorithms or other methods under a limited number of scenarios 
before hand, relative volumes pumped from different sources, pumping settings, preparing for exceptions, pipe bursts

• Online optimization
• Optimization program calculates the best solution dynamically and continuously: for example the settings for all presssure

booster stations or water sources
• Can be controlling or an expert system

• Calibration
• Change model parameters so that the simulated results match the measured
• Locating leaks, closed valves, general hydraulic or quality calibration
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DIFFERENT LEVELS OF ACTIONS TO REDUCE 
ENERGY USE
• Changing control system parameters and settings

• Constant, smooth pumping, using of multiple directions at once, utilizing the sources close to demand 
maximally

• Fully automatic control
• Optimizing parallel pumping, processes

• Replacing pumps
• Installing variable speed drives
• Installing new pumps, possibly multiple differently sized pumps

• Changes in the network
• Pressure re-zoning
• Adding more elevated storage
• Restructuring storage: lowering or rising the tanks
• Fixing, constructing or redimensioning of pipes
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COST VS BENEFIT
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TYPICAL CONSTRAINTS

• Users
• Pressure level (2–8 bar)
• Pressure difference (<1 bar)
• Quality, especially water age (<4–7 days)

• Network
• Velocity (<0.5–1.0 m/s)
• Unit headloss (<3–5‰)

• Tanks
• Minima and maxima for level, volume and capacity (hours)
• Quality, especially water age (<4–7 days)
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TYPICAL CONSTRAINTS

• Water soures
• Minimum and maximum flow (hourly and daily constraints)
• Minimum running time for pumps and maximum allowed number of pump switches
• Outlet pressure limit (8–10 bar)
• Pump capacity
• Limits for efficiency, power and specific energy

• Pressure booster stations
• Inlet pressure limit (1 bar)
• Outlet pressure limit (8–10 bar)
• Pump capacity
• Limits for efficiency, power and specific energy
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WHY OPTIMIZATION IS HARD IN WSS?

• In pressurized system everything affects everything else
• Even the smallest system has numerous solutions
• Change in controls, outlet pressure or tank volume can cause surprizing cascading 

effects

• Network equations cannot be solved analytically and they are non-linear
• Traditional methods cannot be used
• Optimization is computationally intensive

• Evaluating constraints, and often the objective function too, require 
hydraulic modeling
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HYDRAULIC MODEL

• Optimization requires the use of a hydraulic model (EPANET, EPASWMM)

• Model solves the energy use and workings of the network for the given solution candidate: objective + constraints

• Model accuracy should reflect the desired goal: typically as accurate as possible, but computational time can limit accuracy

• All pipes, every water user, leakage

• All variable speed drives, motors, pumps, control algorithms
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EPANET

• Public domain, basis for practically all commercial solutions: WaterCAD, Fluidit Water, 
MikeUrban…

• Under active scientific research

• Has its limitations tough
• Parallel pumping and variable speed control
• Inaccuracies in efficiency calculations
• Limited possibilities for controlling the network
• Not thread-safe nor re-entrant (implemented in up-coming 2.2)

• A lot of fixes and feature present in literature
• Sunela 2015b, 2015c, 2016, 2017
• Marchi & Simpson 2013

• Easy to use in own code (C, Java, Python, C#...) and in, for example, Matlab and Excel

• Some more recent developments available through OpenWaterAnalytics project
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HOW TO OPTIMIZE?
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ONLINE OPTIMIZATION

• Requires two-way connection between SCADA and 
optimization tool

• Typically optimization is done once an hour, for the 
next 24 h

• Initial tank levels

• Demand forecast

• Optimal settings for every optimizable station for 
each hour

• Constraint definitions

• Errors and problems with data

Water
Network

SCADA and 
Control

Measurements

Controls

Reporting

Control 
System
Model

Measurements

Controls
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Network
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Optimization
Engine

Demand
Forecast
Model

2019-03-11 EUR ING PhD MARKUS SUNELA



EXAMPLE IMPLEMENTATION
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Sunela 2017



OPTIMIZATION METHODS FOR WSS

• WSS optimization is NP hard problem – only approximate solutions exist

• Traditional optimization methods (LP, NLP, DP…) work poorly, if at all, and 
require a lot of time to formulate the problem properly

• Meta-heuristic algorithms are commonly used
• Trajectory based vs population based
• No guarantee of finding the global optimum, but results are ”good enough”
• Don’t require analytical solutions or derivatives. Instead the system is treated as 

black box, that only returns the objective function value and feasibility (for example 
using a hydraulic model). The solutions are made better iteratively using heuristic 
methods.

• Require a lot of computational power
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COMPUTATIONAL TIME

• Simulations are relatively slow, and the number of simulations is great
• The significance of computational time is even more apparent in online 

applications
• Can be improved using

• Parallel processing – many candidates at once or parallelized simulator
• Hybrid algorithms
• Caching
• Model simplification (surrogate model)
• Multi-level optimization or multi-level evaluation (problem decomposition)
• Probabilistic model building GA (PMBGA)
• Combination of the above
• Clever problem formulation to avoid The Curse of Dimensionality: grouping, 

decomposition, restricting design variable value ranges, solving deltas/fractions…
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SOME META-HEURISTIC ALGORITHMS

• Evolutionary algorithms (EA)
• Model evolution of biological populations
• Genetic algorithm (GA) is the most commonly used variant

• Swarm algorithms (SA, swarm intelligence)
• Model movement and behavior of insect and animal swarms and colonies
• Most commonly used are particle swarm optimization (PSO) and ant colony 

optimization (ACO)

• Others, such as dynamically dimensioned search (DDS)
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PARTICLE SWARM ALGORITHM

• Is modeled after swarms of birds and fishes

• Population, or swarm, of candidate solutions or particles
• Initially particles are distributed evenly throughout the search base

• Every particle has a location and velocity
• Coordinate system is n dimensional, where n is the number of design variables
• Each coordinate is value of a design variable

• The velocity for each particle is updated every iteration
• According to simple equations
• The change depends on the particle’s own best result and the best result of the whole swarm
• Location updated based on the velocity

• Basic implementation gets easily stuck in local optimum
• A lot of different versions exist
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ANT COLONY OPTIMIZATION

• Modeled after the way how ants optimize the route between food source and colony

• Initially the ants walk randomly

• When food is found, they return to the colony and leave a trail of pheromones

• The next iteration ants are more likely to choose a route with more pheromons

• The more ants choose an route, the more pheromones are excreted and the more likely 
it is that other ant choose the route

• The amount of pheromones an ant excretes is depends on the goodness of the solution

• Pheromones evaporate partly every iteration

• Works only with integer valued design variables: every variables in a road junction, 
where the range of valid values are the different routes continuing from the junction
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GENETIC ALGORITHM

• Is modeled after evolution – how DNA is evolved
• Population of chromosomes (solution candidate) – each chromosome has multiple genes 

(design variables)
• The fitness of each solution is calculated every iteration
• The best or most fit solutions are most likely to reproduce and have descendants in the next 

generation
• The chromosomes exchange genes and mutate during the process

• Encoding design variables (genes) into chromosomes
• Most typical solution is using a bit string

• One gene is formed by 1–n bit
• Bit coding is stored in a table (for example pipe diameter coding: 00=63 mm, 01=110 mm, 10=160 mm 

and 11=225 mm)
• Integer and real valued genes are possible too, but bitstrings are the most researched
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GENETIC ALGORITHM
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GENETIC ALGORITHM PARAMETERS

• Parameters
• Population size, typically 5–10 times the number of design variables
• Probability of recombination 0.5–0.7
• Probability of mutation typically very small 0.001

• Some of the chromosomes continue unchanged from one generation to 
the next

• Usually 10 to 20 best solutions found so far are saved unchanged in the 
population

• Depending on the problem, there can be from tens to hundreds of 
thousands of generation and each generation requires a number of 
simulations equal to the number of population size
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ARTIFICIAL NEURAL NETWORK (ANN)

• Fitness of a candidate solution can be estimated using, for example, artificial 
neural network (for example MOGA-ANN methods)
• In the beginning all solutions are evaluated completely using a model and ANN is taught
• When ANN becomes learned enough, the fitness is firts approximated using the ANN
• If the solution is very good or bad, the actual goodness is simulated using the model, and 

ANN is trained some more. Otherwise the ANN’s estimate is used
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RESULTS GET ITERATIVELY BETTER
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LOCATING LEAKS

• DDS + brute force approach for finding 
a 2000 m³/d leak

• Minimizing the difference between 
measured and simulated pressures 
and flows + water tower level

• The higher the value, the more 
probable location is for the pipe burst

• Not only one answer, but many with 
different probabilities!
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