
Containers:
Docker and
Kubernetes
17.1.2019
Santeri Paavolainen

“Operating-system-level virtualization, also known as containerization, refers to

an operating system feature in which the kernel allows the existence of multiple

isolated user-space instances. Such instances, called containers, partitions, virtual

environments (VEs) or jails (FreeBSD jail or chroot jail), may look like real computers from

the point of view of programs running in them. A computer program running on an ordinary

operating system can see all resources (connected devices, files and folders, network

shares, CPU power, quantifiable hardware capabilities) of that computer. However,

programs running inside a container can only see the container's contents and devices

assigned to the container.”

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

2

Wikipedia: Operating-system-level virtualization

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/User-space
https://en.wikipedia.org/wiki/FreeBSD_jail
https://en.wikipedia.org/wiki/Chroot_jail
https://en.wikipedia.org/wiki/Shared_resource
https://en.wikipedia.org/wiki/Operating-system-level_virtualization

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

3

container

virtual machine

guest os

hypervisor

hardware

vm

hardware

process

process

1. Hardware
isolation

2. Virtual machine
isolation

3. Process isolation
4. Container

isolation

1.

2.

3.

4.

Container technologies
- LXC: Linux Containers

- OS-level process isolation = cgroups + isolated namespaces
- Docker uses LXC
- Windows …

- Windows Server Containers and Hyper-V Isolation, but …
- Reality: Windows and MacOS

- Docker actually runs a Linux VM where Docker uses LXC
- The fact that containers are run in a separate virtual machine can cause issues

with volume mounts and networks!
- There is also docker-machine

- Which is different from Docker for Windows and Docker for Mac
- Useful if you want to run a “container swarm” in different VMs locally

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

4

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

5

container

Linux

Laptop hardware

process
process

process

File
system

Windows / OSX

Laptop

virtual machine

container

Linux

process
process

process
File

system

Why use Docker for microservices?
- Docker creates containers from images

- Images themselves are immutable à identical versions in multiple
environments

- Image repositories store images (public, private & local);
Location of a single image is a registry, images are tagged (often for versioning)

- Images themselves built … using containers
- Building images itself isolated from host computer* à “Dockerfile” build script

cannot escape into host computer!
- Containers are isolated from outside unless explicitly exposed

- Network ports and file system mount points
- Containers also isolated from other containers unless share a virtual

network
- Note that by default, they do share a common network

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

6

* mostly

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

7

Build Local image
repository

Build directory

Image

Dockerfile

Container

Environmental
variables Volume mounts

docker build docker run

Remote image
repository

do
ck

er
 p

ul
l

version.aalto.fi/gitlab/
microservices-serverless-course/
course-samples

https://version.aalto.fi/gitlab/microservices-serverless-course/course-samples

Simple example
- Shows basic docker commands
- docker ps
- docker build
- docker run
- docker rm
- docker images
- docker rmi

- Dockerfile
- FROM
- CMD

- Goal: Print “Hello, world!” on screen

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

9

Long-running commands

- What happens if there is a long-running process (server)
- Some more useful commands for debugging
- docker ps
- docker exec
- docker stats

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

11

Modifying image

- How to modify the image?
- Dockerfile
- RUN

- Let’s install bash
- Note: alpine includes /bin/sh, we could have used that in previous

example already (docker exec … /bin/sh)

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

13

Simple web static web server

- How do we get files into the image?
- Dockerfile
- COPY
- WORKDIR

- Plus, how do we access HTTP on the container

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

15

A bit more on docker networking

- We should define what ports the container exposes in the
Dockerfile
- EXPOSE 80
- EXPOSE 80/tcp

- This does not automatically publish them
- ”Publishing” means allowing access from outside the container

network
- docker network ls
- docker run –-network <network>

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

17

Parameterizing containers

- Passing arguments to a running container
- Command arguments
- Environment
- Volume mounts

- Dockerfile
- ENTRYPOINT
- ENV
- VOLUME

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

18

Parameterizing containers

- Passing arguments to a running container
- Command arguments
- Environment
- Volume mounts

- Dockerfile
- ENTRYPOINT
- ENV
- VOLUME

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

20

Building and running containers

- What we’ve learned so far
- Building simple containers with own modifications and files
- Inspecting running containers (docker exec)
- Exposing and accessing network services in containers (EXPOSE

and docker run -p)
- Command line arguments (ENTRYPOINT and docker run)
- Environmental variables (ENV and docker run -e)
- Volume mounts (VOLUME and docker run -v)

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

22

State in containers

- Previously used --rm to not leave containers lying around
after they’re exited

- Persistency with containers is possible by either
- Not removing the container – it will retains its local modifications

in file system
- Using a volume that is retained across container lifecycles

- Retaining state in containers always problematic
- However, entirely acceptable for performance reasons (caching)

and local development (running database in a retained container)

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

23

Example: Local postgres database

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

24

$ docker run --name mydb -e POSTGRES_PASSWORD=sikret -d postgres
ee7e3301a1bd6a86053ce103f23ccab404a502a89cfe1e3406c89b6f6c61972b
$ docker run --rm -ti --link mydb postgres psql -h mydb -U postgres
Password for user postgres: sikret
psql (11.1 (Debian 11.1-1.pgdg90+1))
Type "help" for help.

postgres=#

Remote registries

- Where did “alpine” and “postgres” images come from?
- hub.docker.com/alpine:latest and

hub.docker.com/postgres:latest
- Not URLs!

<host>/<registry>:<tag>
- This is the “docker hub”, centralized & well-known registry location

- ”hub.docker.com” is implicit for any registry name not found locally
- You can run your own private registry or registry service

- Amazon Elastic Container Registry, Google Container Registry,
TreeScale, host your own, …

- If developing only locally, not necessary

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

25

Kubernetes

Container orchestration

- “docker” itself quite low-level mechanism
- To set up a multi-layer service:

1. docker network create
2. docker network create
3. docker run x N times
4. Don’t forget volumes, and environment, and arguments …
5. Then remember to start/stop as needed (docker stop, docker start)

- ”Container orchestration” systems use declarative languages
to define what kind of configuration you want to run

- Kubernetes, Docker Compose, ...

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

27

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

28

Build Local image
repository

Build directory

Image

Dockerfile

Container

Environmental
variables Volume mounts

docker build docker run

Remote image
repository

do
ck

er
 p

ul
l

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

29

System
description

Image Container

env vol net

What is run

How it is run

Where it is run

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

30

Source: Khtan66 (CC BY 4.0)

https://commons.wikimedia.org/wiki/File:Kubernetes.png

Installing kubernetes

- With UI installers (OSX, Windows)
- Already contains kubernetes functionality – but needs to be enabled

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

31

Installing Kubernetes

- Linux (and more advanced for OSX)
- Minicube, microk8s (Ubuntu snap)
- https://kubernetes.io/docs/tasks/tools/install-kubectl/
- Install kubectl and create a local cluster
- Interactive tutorial: https://kubernetes.io/docs/tutorials/kubernetes-

basics/create-cluster/cluster-interactive/

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

32

https://github.com/kubernetes/minikube
https://microk8s.io/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-interactive/

Kubernetes concepts

- Pods
- “A Pod represents a unit of deployment: a single instance of an

application in Kubernetes, which might consist of either a single
container or a small number of containers that are tightly coupled
and that share resources.” [Kubernetes]

- 1+ containers — tightly coupled, sharing resources, single instance
of an application

- Pods have a limited lifecycle
- Controlled by … a controller
- Containers within a pod may be restarted without the pod failing

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

33

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/

Kubernetes concepts

- Services
- Persistent and long-living
- Defines how to access (what and how to expose) a specific set of

logically identified pods (but does not run pods!)
- Same pod may be used to provide different types of services

- Controllers
- Responsible for running pods, defined via templates
- Different pod control models: stateless, stateful, replicated, …

- Jobs, Namespaces, Entities, …
- Allow finer control and more elaborate configurations

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

34

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

35

Service

Deployment

Replica Set

Container

Pod

Request

Registries and Kubernetes
- This is a practical issue you will run into!
- Kubernetes by default tries to pull images

- Always if “latest” tag (default) à tries to pull image from Docker Hub which can
fail (or fetch image you did not expect)

- Minikube has internal self-hosted registry
- eval $(minikube docker-env)
- Works around the problem …

- Docker from docker.com does not (and docker on Linux)
- Have to explicitly prevent kubernetes from attempting to pull!
- imagePullPolicy: Never

- Alternatively use other tag than “latest”
- Tries to use local version first, but … will attempt a pull if not found

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

36

Simple example
- Let’s run the “hello” container from Docker examples
- Using “Job” controller

- Useful for one-off operations, batch jobs etc. (not for services)

apiVersion: batch/v1
kind: Job
metadata:

name: greeter
spec:

template:
spec:

containers:
- name: greeter-container

image: hello
imagePullPolicy: Never

restartPolicy: Never

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

37

Simple web server
- Re-use “site” from earlier

examples
- Kubernetes does not address how

images are built at all — noticed?
- Create a “Deployment” type

controller
- It will internally instantiate a

replication set (replicas
parameter)

- Note the need of selector in both
deployment and service
- In deployment, it tells what pods the

replication set manages
- In service, it tells what pods host the

port to expose as a service

apiVersion: apps/v1
kind: Deployment
metadata:
name: static-site-deployment

spec:
replicas: 2
selector:
matchLabels:
app: static-site

template:
metadata:
labels:
app: static-site

spec:
containers:
- name: site-container
image: site
imagePullPolicy: Never
ports:
- containerPort: 80

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

39

apiVersion: v1
kind: Service
metadata:
name: web

spec:
selector:
app: static-site

type: LoadBalancer
ports:
- port: 80
name: web

Multiple object in configurations
- Objects in Kubernetes are persisted

- Explicit lifecycle management required: create, delete — these are not scripts!
- A YAML file can contain multiple sections

- first object

second object

- Use of service names and namespaces make separation of
development, staging and production easier
- kind: Service

apiVersion: v1
metadata:

name: my-service
namespace: prod

spec:
type: ExternalName
externalName: my.database.example.com

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

41

What you can and cannot run locally
- Each container and pod uses memory

- Container + everything else (proxies etc.)
- Java runtime easily >500MB in size
- Minimal machine-code programs (go, rust) can be replicated (example)

- Disk space may become an issue too
- On OSX/Win local Docker runs in a

virtual machine
- Mostly relevant only if you use

a lot of storage
- Kubernetes objects are persistent

- Survives reboots – can’t escape
replicas=1000 local accident easily

- Hint: Disable docker desktop autostart …

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

42

Some topics that will be covered later

- Covered at appropriate lectures via examples
- DNS and service discovery, service proxies, dynamic endpoints
- Namespaces
- Different networking modes

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

43

Some practical tips: Writing Dockerfiles

- Create Dockerfiles in two steps: 1) development and
2) maintenance

- In development, just pile up RUN after RUN command
- In maintenance, optimize images by minimizing RUN commands

and layered state, leveraging separate build containers
- Every and each command in Dockerfile creates a new layer, e.g. difference

from earlier state
- “RUN dd if=/dev/zero of=/zeros bs=1G”; ”RUN rm /zeros” defines an image

where a single layer contains 1G file
- In this course you probably should optimize for speed of

development, not minimizing image sizes (aka no to maintenance)

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

44

Writing Dockerfiles
- Check out Alpine Linux as a small base image

- https://alpinelinux.org/ and https://hub.docker.com/_/alpine
- Package command: apk
- Install packages: apk add –no-cache <package>
- Package search: https://pkgs.alpinelinux.org/packages

- Simple workflow
- Develop program locally (no docker)
- Once you get MVP, start to containerize using volume mount
- docker run --rm -v $PWD:/work -ti --init alpine
- cd /work
- python3 server.py
- Find out what failed, what was missing, do apk add, go build, sbt, pip install,

whatever is needed
- Add these as RUN to Dockerfile

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

45

https://alpinelinux.org/
https://hub.docker.com/_/alpine
https://pkgs.alpinelinux.org/packages

Summarizing …

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

48

Service

Deployment

Replica Set

Request

RegistryImageDockerfile

Build Pull

service.yaml

deployment.yaml

Docker

K8S

Summary

- Docker is a container build and execution framework
- Manages networking, volume mounts, registry push/pull, persistent

container state, etc.
- Docker’s boundary is a single container

- No service orchestration in docker itself (yes in docker compose,
but that’s a separate solution)

- Kubernetes widely used for container orchestration
- Manages pods, which can consist of multiple containers, and

services which are exposed network ports and/or addresses

15.1.2019
COM-EV Microservice architectures and serverless computing 2019

49

