
Personal 
coursework
25.1.2019
Santeri Paavolainen







Personal course work

- This is the largest single work item on the course
- Based on ECTS: 135h of work for the whole course, removing 

lectures, group assignments and exercise sessions leaves ~ 80h à
6h / week

- You are expected to design and develop a
- Microservice architecture with >2 distinct services
- At least one serverless or stateless component
- Integrates three aspects of microservice architectural patterns (see 

later)

22.1.2019
COM-EV Microservice architectures and serverless computing 2019

4



What is a microservice architecture?

- That’s the topic of this course
- If you want a crash course, go to Martin Fowler’s 

microservices page

24.1.2019
COM-EV Microservice architectures and serverless computing 2019

5

Image source: Martin Fowler

https://martinfowler.com/articles/microservices.html


Personal course work

- It must work at the level of a “demonstrator” piece
- Actual functionality can be trivial or mocked
- However, the three microservice aspects cannot be mocked, and the 

overall inter-service operations must be functional

- Focus is on how the service is structured and operated
- The “business functionality” is relevant only as much as it is needed 

for testing, demonstrations etc.
- Of course, working on a project is probably more meaningful if the 

functionality makes sense to you

22.1.2019
COM-EV Microservice architectures and serverless computing 2019

6



What’s in a demonstrator?

- You should invent yourself a real-world (business) scenario
- Pet grooming service reservation?
- Mobile application backend for group messaging?
- Some service you’d run for your home automation and monitoring?

- Why some real-world scenario?
- Because generalization is difficult à easier to take a scenario and work 

on it
- Easier for others to understand what a specific microservice is for
- ”Service FOO calls service BAR to perform operation XYZ”

vs. 
“Front-end calls geolocation service to get user’s geographical coordinates for 
focusing on the correct area on a user-visible map.”

25.1.2019
COM-EV Microservice architectures and serverless computing 2019

7



What can be mocked and what not?
- Assume one microservice you create is GeoLocation of an IP address

- It is used like: GET /geo?ip=1.2.3.4
It returns 200 OK and JSON response on success: {“lat”: 60.1234, “lon”: -5.1234}

- What needs to be implemented in fully functional manner
- REST server
- /geo endpoint
- Specification for your service (you can use OpenAPI format, or just words)

- What can be mocked (e.g. not implemented functionally correctly)
- Correct functionality is irrelevant, just validity of response

24.1.2019
COM-EV Microservice architectures and serverless computing 2019

8

Unacceptable:
def geo(ip):

return 200, {}

Acceptable:
def geo(ip):

if not valid_ip(ip):
return 400, “input not ip address”

return 200, {“lat”: random.uniform(-90.0, 90.0), 
“lon”: random.uniform(-180.0, 180.0)}

Why?

“mocked” = technojargon for “faking it”



Should I do X or Y?

- Synchronous vs. asynchronous vs. message-passing
- It’s your architecture and your service, you have to make a reasoned 

choice
- REST vs. gRPC vs. Thrift vs. XYZ?

- Same thing – some scenarios may work better on some, but in the 
end, it is your decision (hint: you won’t get penalized for sticking to 
REST)

- nginx vs. AWS ELB? X vs. Y?
- I really do not care on technology choice – just on how it is used

25.1.2019
COM-EV Microservice architectures and serverless computing 2019

9



“Aspects”?

- Course covers a wide variety of design and operational 
aspects of microservices

- HA, failovers, tracing, logging, service authentication, discovery, …
- Infeasible to implement all of these in the course work
- Each student must pick three separate aspects and 

implement these within the scope of their work
- These must be functionally “complete” (no mock-ups)
- These must be demonstratable, e.g. can be shown to work and cover 

the problem they are meant to solve

22.1.2019
COM-EV Microservice architectures and serverless computing 2019

10



Aspects
Logging Service AAA Role-based user 

AAA Discovery

Service 
degradation Monitoring Tracing Continuous 

deployment

Chaos 
engineering

Backups and 
disaster recovery Caching Secret 

management

Dynamic 
configuration

Geographical 
distribution

Automated 
scaling Versioning

High availability A/B testing … (suggest)

22.1.2019
COM-EV Microservice architectures and serverless computing 2019

11



Selecting aspects
- There is no firm deadline on selecting

- Apart from the actual course work deadline
- You can pick one now, all three, and change your mind later
- … or just choose them after something like a month or so (you’ve still 

got about 2 months until course work DL)
- In the meantime, you can work on the basic microservice structure and 

functionality first
- Which you have to define yourself, too

- Feel free to suggest similar aspects too

- You may do more than 3 aspects in your project — grading is based on 
the best 3

22.1.2019
COM-EV Microservice architectures and serverless computing 2019

12



What if aspect X for geolocation …?

- Logging?
- def geo(ip):

logger.trace(“geo: {}”, ip)
if …:

logger.error(“geo: {} is not a valid ip”, ip)
…

logger.info(“geo: mapped {} to ({}, {})”, ip, lat, lon)
…

- Include logging sidecars (potentially)
- Implement logging server, logging analysis etc. as separate services
- Collect logs from all of your services (not just one)
- …

24.1.2019
COM-EV Microservice architectures and serverless computing 2019

13

Why generating 
log entries is not 
enough?



What if aspect X for geolocation …?
- Metrics?
- metrics = open(“…/metrics.dat”, “a”)

def geo(ip):
print(time.now(), ”start”, “geo”, ip, file=metrics)
…
print(time.now(), “end”, “geo”, ip, file=metrics)
return 200, …

- Would this be acceptable? If so, why? If not, why?
- Resiliency?

- response = requests.get(“http://geo.local/geo?ip={}”.format(ip))
if response.code != 200:
… handle error …

…
- Ok? Why? Why not?

25.1.2019
COM-EV Microservice architectures and serverless computing 2019

14



Personal coursework grading
- Weight on final grade: 50%
- 0-3 pts for general evaluation of the architecture

- Separable? Logically consistent? Division of responsibility?
- 0-3 pts for maintainability

- Can you give the code to someone else? Would they understand how it works 
and be able to work on it?

- 3 topic areas x 0-3 points each
- Implementation, demonstratability, coverage in implementation

- 0-3 pts for milestone demonstrations
- 1 point for demonstrating progress in milestone exercise sessions

- Rejected on unattributed copying, deductions on excessive code re-use
- Total: 18 pts (x 50%)

22.1.2019
COM-EV Microservice architectures and serverless computing 2019

15



What’s logical consistency? Etc.? 
- Again, this is something that is part of the course

- This – and many other – are not black-and-white things
- Software architectures never are
- If you want to be a software architect, you must learn to provide rationale for 

your decisions

- So think it this way
- If you don’t know a shred on the topic, you are unlikely to achieve any logical 

consistency (etc.)
- If you know some of the topic, then you’ll make mistakes, but you’ll get points
- If you can provide rationale for you mistakes – flawed in detail, perhaps – that will 

help
- Finally, you are not expected to have 10 years of software architect experience

24.1.2019
COM-EV Microservice architectures and serverless computing 2019

16


