
Network 
communication
25.1.2019



Contents

- Communication
- Characteristics of physical and protocol layers
- Models, protocols and coordination

- Communication in microservice architectures
- Failures

- Coupling and modularity
- Types of coupling in different architectural approaches
- Achieving modularity at different quanta

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

2



Communication networks
- Even “virtualized” networks 

operate in physical reality
- Sometimes can assume locality 

e.g. loopback speeds (pods)
- Distribution and 

decentralization may hide 
physical aspects

- Translation: System might be placed 
to straddle a buggy or 
oversubscribed router/switch

- Physical latencies: speed of 
light & electric signals, 
processing delays in switches 
and routers; retransmits

~ 40 000 km
* ½ 
/ 300 000 km/s 
/ 2/3 
= 100 ms

+ amplification delay
+ routing delay

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

3



Communication networks

- Assumption of “infinite network capacity” in cloud may fail
- Loss of 50% of network capacity in a datacenter (backhoe)
- Limits at virtual machines and physical servers (AWS ENA 25 

Gbps)
à even if you cannot saturate an IaaS PoP, you can closer to your 

service

- Further delays and failures from protocols and OS
- Number of concurrent TCP connections (OS)
- Bugs in protocol implementations (usually non-OS)

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

4



Network protocols

- TCP almost universal, but
- In some situations UDP may be more suitable (within a service)
- SCTP tends to keep popping up (alpha in K8S v1.12)

- IPv6
- Getting more common, but still mostly user-side requirement

- Deep magic
- TCP slow start algorithm — originally for congestion control
- Anycast, multicast and broadcast (if you control subnets and/or 

routers)
- VPNs and tunnels sometimes for integration (island hopping)

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

5



Application protocols

- Almost all service interactions occur at application level protocols
- HTTP and HTTPS primary (QUIC in the future?)

- HTTP(S) used to transport other application level protocols
- SOAP, REST, …

- gRPC, Thrift, AQMP, etc.
- Operate on top of TCP

- Sometime work around TCP issues (such as slow start, with Keep-Alive 
connections)

- TCP is connection-oriented: connect à transmit à close
- Usually client-server, e.g. specific listener address and port

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

6



Communication models
- Synchronous response

- Request-response pattern
- Reply expected immediately (after processing)

- Asynchronous response
- Processing started by request
- Immediate response provides a handle or identifier
- Response methods

- Polling by client (known endpoint or part of response)
- Callback from server (agreed-upon endpoint or part of request)
- Response publish (message queue, pubsub, blackboard, …)

- Message-passing
- Request itself asynchronous

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

7



Synchronous request

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

8

Client Server

request

response

client 
waiting for 
response

server 
processing 

request



Asynchronous communication models

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

9

Client Server

request

response (id)

processing 
complete

completed (id) or …

Client Server

request

response (id)

completed (id)

Messaging
register / listen

poll

notify

Client Server

request

response (id)
client 

waiting for 
response

server 
processing 

request

server 
initiates 
process

processing 
complete

poll id

not ready

doing some 
other work

poll id

completed



Asynchronous requests vs. 
asynchronous applications
- Asynchronous communication is between two parties
- Asynchronous applications are self-contained

- Avoid blocking at thread level: some other method of waiting
- Event loops, I/O selectors, continuations, etc. low-level 

mechanisms
- Erlang, AKKA, asyncio programming language level constructs

- A synchronous application can make asynchronous requests
- An asynchronous application can make synchronous 

requests

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

10



Failures



Failures in distributed systems

- Rule of thumb:
- Everything fails all the time (randomly, when least expected)

- See Network is reliable paper (hint: it is not)

- Microservice architectures fail more
- More components, more computers, more connections, more 

changes, more of everything
- Risks of correlated failures can be either higher or lower than for 

monolithic systems
- See first lecture slide how number of components affects reliability

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

12

https://queue.acm.org/detail.cfm?id=2655736


Synchronous request

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

13

Client Server

request

response

client 
waiting for 
response

server 
processing 

request

How long does 
connecting and 
sending request 
take?

How long can 
processing be?

What if server 
dies?

What if processing 
fails?

How long does it 
take to transmit full 
response?What if only partial 

response is 
received and 
server hangs?

What if client dies 
after sending 
request?

What if client dies 
after receiving 
response?



But wait, it gets 
worse!



Client Client TCP

connect

connected

Server TCP Server

SYN

SYN, ACK

ACK

accepted

write
data

ACK
read

data
write

Transporting bits over TCP

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

15

This packet can be 
dropped by 
network

and this

and thisbut connect will 
block until then

Eventually these will 
be retransmitted

Here be buffers 
that can fill

and here too

and if they fill up 
write will block too

Let’s not talk about 
firewalls and 
connection 
liveness …



You are not expected to 
understand why these 
failures occur.
Just to understand that 
they lurk everywhere.



Asynchronous communication models

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

17

Client Server

request

response (id)

processing 
complete

completed (id) or …

Client Server

request

response (id)

completed (id)

Messaging
register / listen

poll

notify

Client Server

request

response (id)
client 

waiting for 
response

server 
processing 

request

server 
initiates 
process

processing 
complete

poll id

not ready

doing some 
other work

poll id

completed

xx x
x x

x
x

x

x
xx

x x



Addressing network failures

- Failing terribly is better than hanging indefinitely
- At least you can see them in logs / monitoring

- All low-level socket operations can fail
- This includes close() … in Java, even it can cause an exception

- All network operations should have timeouts
- Abstractions may try to hide the network (Java RMI)

- Long-lived quiescent connections are subject to random network 
dropouts

- Stateful firewalls
- TCP and protocol-level keepalives (ping, echo, …)

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

18



Addressing protocol failures
- Specification: 

- GET /resource
- 200 OK with application/json or 503 Service Unavailable

- Code:
- resp = conn.get(“/resource”)

if resp.code == 200:
j = json.loads(resp.body)
…

elif resp.code == 503:
…

- Transparent proxy
- May return 504 Gateway timeout
- Might randomly respond with text/html advert page

- We’ll cover architectural approaches to handling network and remote failures 
later in the course

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

19



Brewer’s theorem (aka CAP)

- The CAP theorem (later proven) states that for distributed 
systems, out of

- Consistency
- Availability
- Partition-tolerance

it is possible to achieve only CP or AP all the time

- See this for later description of the theorem (with critique)

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

23

https://www3.nd.edu/~dthain/courses/cse40822/spring2016/papers/cap.pdf


Brewer’s theorem’s consequences

- Hard partitions are generally rare
- Most of the time it is possible to achieve both consistency and 

availability
- However, partitions do still occur

- Then you need to choose between availability and consistency
- “Eventually consistent” mechanisms choose availability

- In large enough systems, something fails all the time
- Consideration in services — which is critical?

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

24



Brewer’s theorem’s consequences

- Just accept that

it is not possible to get ACID guarantees in a distributed 
system

&

all microservice architectures are distributed systems.

31.1.2019
COM-EV Microservice architectures and serverless computing 2019

25

all
 th

e t
im

e


