School of Electrical
Engineering

Network
communication

Contents

- Communication
- Characteristics of physical and protocol layers
- Models, protocols and coordination
- Communication in microservice architectures
- Failures
- Coupling and modularity
- Types of coupling in different architectural approaches
- Achieving modularity at different quanta

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 31.1.2019
Engineering 2

Communication networks

- Even “virtualized” networks
operate in physical reality

- Sometimes can assume locality
e.g. loopback speeds (pods)

- Distribution and .
decentralization may hide

physical aspects ~ 40 000 km
- Translation: System might be placed A
to straddle a buggy or / 300 000 km/s
oversubscribed router/switch
. . /213
- Physical latencies: speed of =100 ms
light & electric signals,
processing delays in switches + amplification delay
and routers; retransmits + routing delay

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 31.1.2019

Engineering 3

Communication networks

- Assumption of “infinite network capacity” in cloud may fail
- Loss of 50% of network capacity in a datacenter (backhoe)

- Limits at virtual machines and physical servers (AWS ENA 25
Gbps)

- even if you cannot saturate an IaaS PoP, you can closer to your
service

- Further delays and failures from protocols and OS
- Number of concurrent TCP connections (OS)
- Bugs in protocol implementations (usually non-OS)

School of Electrical 31.1.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 4

Network protocols

- TCP almost universal, but
- In some situations UDP may be more suitable (within a service)
- SCTP tends to keep popping up (alpha in K8S v1.12)
- IPv6
- Getting more common, but still mostly user-side requirement
- Deep magic
- TCP slow start algorithm — originally for congestion control

- Anycast, multicast and broadcast (if you control subnets and/or
routers)

- VPNs and tunnels sometimes for integration (island hopping)

School of Electrical 31.1.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 5

Application protocols

- Almost all service interactions occur at application level protocols

- HTTP and HTTPS primary (QUIC in the future?)

- HTTP(S) used to transport other application level protocols
- SOAP, REST, ...

- gRPC, Thrift, AQMP, etc.
- Operate on top of TCP

- Sometime work around TCP issues (such as slow start, with Keep-Alive
connections)

- TCP is connection-oriented: connect = transmit - close
- Usually client-server, e.g. specific listener address and port

School of Electrical 31.1.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering

6

Communication models

- Synchronous response
- Request-response pattern
- Reply expected immediately (after processing)
- Asynchronous response
- Processing started by request
- Immediate response provides a handle or identifier

- Response methods
- Polling by client (known endpoint or part of response)
- Callback from server (agreed-upon endpoint or part of request)
- Response publish (message queue, pubsub, blackboard, ...)
- Message-passing
- Request itself asynchronous

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 31.1.2019
Engineering 7

Synchronous request

Client Server
|
|
|
|
request |
client : server
waiting for : processing
response : request
: response
|
|
|
|
|
|
|
|
|
Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 31.1.2019
Engineering

8

Asynchronous communication models

Client Server Client Server Client Server Messaging
I
I: : | register/ listen i
' 1 + |
client request : request : t i i
Wing for ---------- . ; X reques
waiting for . response (id) ... server response (id) ! '
response initiates response (id) '
process !
doing some . :
other work pollid L server |
77 processing completed (id !
not ready request p (id) :
]
! poll i
processing : > |
poll id u complete " '
completed completed (id) or ...
! """ processing notify ! !
L] I complete ; !
[}
! | | |
Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 31.1.2019
Engineering

9

Asynchronous requests vs.
asynchronous applications

- Asynchronous communication is between two parties
- Asynchronous applications are self-contained
- Avoid blocking at thread level: some other method of waiting

- Event loops, I/0 selectors, continuations, etc. low-level
mechanisms

- Erlang, AKKA, asyncio programming language level constructs

- A synchronous application can make asynchronous requests

- An asynchronous application can make synchronous
requests

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 31.1.2019

Engineering 10

Failures

Aalto University
School of Electrical
|

Engineering

Failures in distributed systems

- Rule of thumb:
- Everything fails all the time (randomly, when least expected)

- See Network is reliable paper (hint: it is not)

- Microservice architectures fail more
- More components, more computers, more connections, more
changes, more of everything

- Risks of correlated failures can be either higher or lower than for
monolithic systems

- See first lecture slide how number of components affects reliability

School of Electrical 31.1.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 12

https://queue.acm.org/detail.cfm?id=2655736

Synchronous request

What if client dies
after sending
request?

What if client dies
after receiving
response?

\

client
waiting for
response

How long does
connecting and
sending request

take?
. How long can
Client _erlver processing be?
|
|
request : What if processing
fails?
server
rocessin)
prequestg <« What if server
response dies?
:
|
! \How long does it
| take to transmit full
! ?
What if only partial ' response:
response is
received and
serverhangs?

A

Aalto University
School of Electrical
Engineering

COM-EV Microservice architectures and serverless computing 2019
31.1.2019
13

But wait, it gets
worse!

This packet can be

Transporting bits over TCP - awowesyy

network

Client Client TCP Server T Server and this

Eventually these will |~
be retransmitted connect |
but connect will > SYN - and this

: : >
block until then E \NN SYN, ACK .—1 |
connected ACK
Here be buffers o
that can fill accepte]
write o /
and here too ' > data
ACK —
i read ,
write g > Let’s not talk about
. . data i
and if they fill up —_ flrewalli and
write will block too gonnec ion
_[_[T liveness ...
. I T I
A Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 31.1.2019
Engineering I

You are not expected to
understand why these
failures occur.

Just to understand that
they lurk everywhere.

Asynchronous communication models

client
waiting for
response

doing some ~~

other work

request

response (id)

poll id

X not ready

poll id

S

Y

completed

Server

server

initiates

process
server

processing
request

processing
complete

request

response (id)

X

completed (id)

7" processing
complete

register / listen

Messaging

request

response (id)

notify

N
4
code (id)
]
! poll
T >
|
or

A

Aalto University
School of Electrical
Engineering

COM-EV Microservice architectures and serverless computing 2019

31.1.2019
17

Addressing network failures

Failing terribly is better than hanging indefinitely

- At least you can see them in logs / monitoring
All low-level socket operations can fail

- This includes close() ... in Java, even it can cause an exception
All network operations should have timeouts

- Abstractions may try to hide the network (Java RMI)

Long-lived quiescent connections are subject to random network
dropouts

- Stateful firewalls
- TCP and protocol-level keepalives (ping, echo, ...)

School of Electrical 31.1.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering

18

Addressing protocol failures

Specification:
- GET /resource
- 200 OK with application/json or 503 Service Unavailable

- Code:
- resp = conn.get (“/resource”)
1f resp.code == 200:

j = Json.loads (resp.body)

eli% resp.code == 503:

Transparent proxy
- May return 504 Gateway timeout
- Might randomly respond with text/html advert page

We'll cover architectural approaches to handling network and remote failures
later in the course

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 31.1.2019
Engineering

19

Brewer’s theorem (aka CAP)

- The CAP theorem (later proven) states that for distributed
systems, out of

- Consistency
- Availability
- Partition-tolerance

it is possible to achieve only CP or AP all the time

- See this for later description of the theorem (with critique)

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 31.1.2019

Engineerin g 23

https://www3.nd.edu/~dthain/courses/cse40822/spring2016/papers/cap.pdf

Brewer’s theorem’s consequences

Hard partitions are generally rare
- Most of the time it is possible to achieve both consistency and
availability
However, partitions do still occur
- Then you need to choose between availability and consistency
- “Eventually consistent” mechanisms choose availability

In large enough systems, something fails all the time
Consideration in services — which is critical?

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 31.1.2019
Engineering 24

Brewer’s theorem’s consequences

- Just accept that &

it is not possible to get ACID guarantees in a distributed
system

&

all microservice architectures are distributed systems.

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 31.1.2019
Engineering

25

