
Single-node 
patterns
14.2.2019
Santeri Paavolainen



Overview

- “Single node” refers to physically co-located components
- Usually part of a single service
- Internal structure for a service (local decisions)
- In Kubernetes this would be containers in a single pod
- Affinity-based scheduling of different pods is a multi-node pattern, discussed later

- Why single node?
- Microservice architectures are multi-node (distributed) systems … ?

- Terminology follows Designing Distributed Systems (Burns, 2018)

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

2



Service interface

Systems 
architecture

Service 
architecture

Operational 
concerns

S
ys

te
m

S
e
rv

ic
e
 im

p
le

m
e
n
ta

tio
n

Previous 
lecture

This lecture



Nomenclature

- “Patterns” refers to 
- “Re-usable form of a solution to a design problem” [Wikipedia]
- Popularized in CS by GoF’s book Design Patterns (1994)
- Originally very OO-focused, but has been expanded to software architecture
- Anti-patterns are counterproductive patterns (enlightening!)

- Pattern is not a template or a code library, nor a component
- “Way of understanding and structuring a problem and its solution”

- Important in establishing common terminology!

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

4

https://en.wikipedia.org/wiki/Anti-pattern


Client Server

request

response

client 
waiting for 
response

server 
processing 

request

Some architectural patterns

- Layering
- UI-Service-Business-
Persistence

- Client-Server
- Master-Slave
- Event-bus
- Microservices

- Why not MVC?

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

5

Load balancer

UI

Customer 
logic

Billing 
logic

Affiliate 
logic

Data access

UI

Customer 
logic

Billing 
logic

Affiliate 
logic

Data access

Shard

Load balancer

Shard Shard

UI

Customer, billing & affiliate logic

Data Service

Database

Load balancer

API

API

Jenkins Master

Jenkins Slaves



Patterns for co-scheduled containers

- Sidecar
- Ambassador
- Adapter

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

6



Sidecar pattern

- Sidecar as in “sidekick”
- Adding something the main protagonist does not have

- Co-scheduling of a container (potentially with shared state)

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

7

Service 
container

Sidecar
container

Container group (pod) Shared state
⁃ Disk
⁃ Memory
⁃ Network
⁃ …



Sidecar examples

- Adding HTTPS to legacy 
application

- Updating configuration
- Access control

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

8



Ambassador

- Specific type of sidecar
- Abstracts and/or brokers external interface for the service

- Different ambassador in different environments (dev vs. prod)
- Provides a constant interface for the service

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

9



Ambassador examples

- Hiding 500s
- Service brokering
- Local caching

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

10



Adapter

- Sidecar pattern when 
someone else needs a 
specific interface

- Common interface used across
the system such as logging,
metrics, service health etc.

- Not “core” service but 
supporting interfaces

- Both push and pull interfaces

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

11



Kubernetes example of sidecar

- Simple “Hello world!” web server
- Using UWSGI to generate a log to /var/log/uwsgi.log
- Simple app showing last 40 lines of /var/log/uwsgi.log
- Two containers sharing /var/log
- Both run on same pod

- Both can not bind to the same port

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

12



Sidecar vs. ambassador vs. adapter
- All co-scheduled with a service container

- Tight coupling!!!
- Names are important!

- All similar in structure and functionality
- Difference in what interacts and to/from where

- Sidecar: augment and improve service
- Ambassador: brokers external interface to service core
- Adapter: transforms an interface to common interface

- Warning: Semantics sometimes a bit murky (consider metrics)

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

13



Why co-scheduled containers?

- Easy argument for legacy systems
- If it ain’t broke, don’t fix it!

- Avoid tight coupling at code level
- Changing application logging code
- Move tight coupling to interface level (up the stack)

- Easier to test and validate
- Separate life cycle from core application

- Shareable across services as containers
- Container-level re-use!

- Reduced variability for service core

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

14


