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Overview

- “Single node” refers to physically co-located components
- Usually part of a single service
- Internal structure for a service (local decisions)
- In Kubernetes this would be containers in a single pod
- Affinity-based scheduling of different pods is a multi-node pattern, discussed later

- Why single node?
- Microservice architectures are multi-node (distributed) systems … ?

- Terminology follows Designing Distributed Systems (Burns, 2018)
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Nomenclature

- “Patterns” refers to 
- “Re-usable form of a solution to a design problem” [Wikipedia]
- Popularized in CS by GoF’s book Design Patterns (1994)
- Originally very OO-focused, but has been expanded to software architecture
- Anti-patterns are counterproductive patterns (enlightening!)

- Pattern is not a template or a code library, nor a component
- “Way of understanding and structuring a problem and its solution”

- Important in establishing common terminology!
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Some architectural patterns

- Layering
- UI-Service-Business-
Persistence

- Client-Server
- Master-Slave
- Event-bus
- Microservices

- Why not MVC?
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Patterns for co-scheduled containers

- Sidecar
- Ambassador
- Adapter
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Sidecar pattern

- Sidecar as in “sidekick”
- Adding something the main protagonist does not have

- Co-scheduling of a container (potentially with shared state)
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Sidecar examples

- Adding HTTPS to legacy 
application

- Updating configuration
- Access control
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Ambassador

- Specific type of sidecar
- Abstracts and/or brokers external interface for the service

- Different ambassador in different environments (dev vs. prod)
- Provides a constant interface for the service

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

9



Ambassador examples

- Hiding 500s
- Service brokering
- Local caching
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Adapter

- Sidecar pattern when 
someone else needs a 
specific interface

- Common interface used across
the system such as logging,
metrics, service health etc.

- Not “core” service but 
supporting interfaces

- Both push and pull interfaces
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Kubernetes example of sidecar

- Simple “Hello world!” web server
- Using UWSGI to generate a log to /var/log/uwsgi.log
- Simple app showing last 40 lines of /var/log/uwsgi.log
- Two containers sharing /var/log
- Both run on same pod

- Both can not bind to the same port
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Sidecar vs. ambassador vs. adapter
- All co-scheduled with a service container

- Tight coupling!!!
- Names are important!

- All similar in structure and functionality
- Difference in what interacts and to/from where

- Sidecar: augment and improve service
- Ambassador: brokers external interface to service core
- Adapter: transforms an interface to common interface

- Warning: Semantics sometimes a bit murky (consider metrics)
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Why co-scheduled containers?

- Easy argument for legacy systems
- If it ain’t broke, don’t fix it!

- Avoid tight coupling at code level
- Changing application logging code
- Move tight coupling to interface level (up the stack)

- Easier to test and validate
- Separate life cycle from core application

- Shareable across services as containers
- Container-level re-use!

- Reduced variability for service core
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