A?

Aalto University
School of Electrical
Engineering

Single-node
patterns

14.2.2019
Santeri Paavolainen

Overview

- “Single node” refers to physically co-located components
- Usually part of a single service
- Internal structure for a service (local decisions)

- In Kubernetes this would be containers in a single pod
- Affinity-based scheduling of different pods is a multi-node pattern, discussed later

- Why single node?
- Microservice architectures are multi-node (distributed) systems ... ?

- Terminology follows Designing Distributed Systems (Burns, 2018)

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 13.2.2019
Engineering 2

guuEEEg,
e Sa,

Previous .

lecture \

System

This lecture

»
N
n
»
"
1
u
.
.
.
.
.
.
.
.
A J
*

Service interface

Service implementation

Nomenclature

- “Patterns” refers to
- “Re-usable form of a solution to a design problem” [Wikipedia]

- Popularized in CS by GoF’s book Design Patterns (1994)
- Originally very OO-focused, but has been expanded to software architecture
- Anti-patterns are counterproductive patterns (enlightening!)

- Pattern is not a template or a code library, nor a component
- “Way of understanding and structuring a problem and its solution”

- Important in establishing common terminology!

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 13.2.2019
Engineering o 4

https://en.wikipedia.org/wiki/Anti-pattern

Some architectural patterns

Jenkins Master

L [

Layering
- UlI-Service-Business-
Persistence

- Client-Server
- Master-Slave
- Event-bus

- Microservices

- Why not MVC? — —

Jenkins Slaves

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 13.2.2019
Engineering

5

Patterns for co-scheduled containers

- Sidecar
- Ambassador
- Adapter

13.2.2019

Aalto Universi
School of Electrical
Engineering 6

It l.ll ity COM-EV Microservice architectures and serverless computing 2019

Sidecar pattern

- Sidecar as in “sidekick”
- Adding something the main protagonist does not have
- Co-scheduling of a container (potentially with shared state)

Container group (pod) Shared state

e e = e = = e = e e = = = -

C N Disk

PP ! T Memory

: ! Network

|

| LT |

. . . |

: Service Sidecar .

I . < > . !

! container container !

! :

! l

|

! l

l\ /
Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 13.2.2019
Engineering o

7

Sidecar examples

check for update

403 Forbidden '

https://... i HTTPS http:// Legacy
. — > HTTP
- Addlng HTTPS to Iegacy E proxy service
application S
= U pdati ng CO nfig u ration Configuration source
- Access control
.', ___________________________________ \\: i Service signal reload Config
request w/ token i Access request ! ! | container | manager
— control » Service | !
D proxy i i read config cgﬁﬁg tfﬁe

Shared filesystem

\
|
I
I
I
I
I
I
I
I
|
|
|
|
|
|
|
|
I
I
I

Aalto University
School of Electrical
Engineering

A

COM-EV Microservice architectures and serverless computing 2019

13.2.2019
8

Ambassador

- Specific type of sidecar

- Abstracts and/or brokers external interface for the service
- Different ambassador in different environments (dev vs. prod)
- Provides a constant interface for the service

Container group (pod)

P T I I RS e ——

4 \

! \

[} |

I |

I |

[} |

[} |

I |

: Service Iocalhost’ Ambassador ! External

: container container : services

. l

[} |

[} |

[} |

] |

| 1

N . 7
Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 13.2.2019
Engineering o

9

Ambassador examples

- Hiding 500s ' I

\
|
S . b k . : 500 Error
- H I
ervice rokKerin g . Sem.ce »| Ambassador : External
| container container i service
] 1 |
- Local caching : —___retry request
| |
1 I
N / 200 OK
requests for 1* - 3
External ! i
T service 1 —ie SOMIC® Lo Gache External
! Broker 1 or 2 I | comamer |
1 : | |
— Se;v[ce —>| basedon | i ! i
} | comainer query [TP— | :
: | External ! :
M e /! service 2 ! :
! !
l\)
requests for 2* ittt ’
Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 13.2.2019
Engineering o

10

Adapter

- Sidecar pattern when
someone else needs a
specific interface

- Common interface used across
the system such as logging,
metrics, service health etc.

- Not “core” service but
supporting interfaces

- Both push and pull interfaces

1
|
I
Service : External
R < Adapter ———
container P : consumer
I
| \
! B
;
common interface
| ;
| v
H 1
Serv[ce - Adapter : External
container | consumer
|
1
|

Aalto University
School of Electrical
Engineering

COM-EV Microservice architectures and serverless computing 2019
13.2.2019
11

Kubernetes example of sidecar

- Simple “Hello world!” web server
- Using UWSGI to generate a log to /var/log/uwsgi.log
- Simple app showing last 40 lines of /var/log/uwsgi.log
- Two containers sharing /var/log
- Both run on same pod
- Both can not bind to the same port

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 13.2.2019
Engineering 12

Sidecar vs. ambassador vs. adapter

All co-scheduled with a service container
- Tight coupling!!!
Names are important!
- All similar in structure and functionality
- Difference in what interacts and to/from where

- Sidecar: augment and improve service
- Ambassador: brokers external interface to service core
- Adapter: transforms an interface to common interface

- Warning: Semantics sometimes a bit murky (consider metrics)

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 13.2.2019
Engineering 13

Why co-scheduled containers?

Easy argument for legacy systems

- Ifit ain’t broke, don’t fix it!
Avoid tight coupling at code level

- Changing application logging code

- Move tight coupling to interface level (up the stack)
Easier to test and validate

- Separate life cycle from core application
Shareable across services as containers

- Container-level re-use!
Reduced variability for service core

School of Electrical 13.2.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering

14

