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Overview

- “Single node” refers to physically co-located components
- Usually part of a single service
- Internal structure for a service (local decisions)

- In Kubernetes this would be containers in a single pod
- Affinity-based scheduling of different pods is a multi-node pattern, discussed later

-  Why single node?
- Microservice architectures are multi-node (distributed) systems ... ?

- Terminology follows Designing Distributed Systems (Burns, 2018)
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Nomenclature

- “Patterns” refers to
- “Re-usable form of a solution to a design problem” [Wikipedia]

- Popularized in CS by GoF’s book Design Patterns (1994)
- Originally very OO-focused, but has been expanded to software architecture
- Anti-patterns are counterproductive patterns (enlightening!)

- Pattern is not a template or a code library, nor a component
- “Way of understanding and structuring a problem and its solution”

- Important in establishing common terminology!
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https://en.wikipedia.org/wiki/Anti-pattern

Some architectural patterns

Jenkins Master

L [

Layering
- UlI-Service-Business-
Persistence

- Client-Server
- Master-Slave
- Event-bus

- Microservices

- Why not MVC? — —

Jenkins Slaves
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Patterns for co-scheduled containers

- Sidecar
- Ambassador
- Adapter
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Sidecar pattern

- Sidecar as in “sidekick”
- Adding something the main protagonist does not have
- Co-scheduling of a container (potentially with shared state)

Container group (pod) Shared state
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Sidecar examples
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Ambassador

- Specific type of sidecar

- Abstracts and/or brokers external interface for the service
- Different ambassador in different environments (dev vs. prod)
- Provides a constant interface for the service

Container group (pod)
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Ambassador examples
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Adapter

- Sidecar pattern when
someone else needs a
specific interface

- Common interface used across
the system such as logging,
metrics, service health etc.

- Not “core” service but
supporting interfaces

- Both push and pull interfaces
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Kubernetes example of sidecar

- Simple “Hello world!” web server
- Using UWSGI to generate a log to /var/log/uwsgi.log
- Simple app showing last 40 lines of /var/log/uwsgi.log
- Two containers sharing /var/log
- Both run on same pod
- Both can not bind to the same port
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Sidecar vs. ambassador vs. adapter

All co-scheduled with a service container
- Tight coupling!!!
Names are important!
- All similar in structure and functionality
- Difference in what interacts and to/from where

- Sidecar: augment and improve service
- Ambassador: brokers external interface to service core
- Adapter: transforms an interface to common interface

- Warning: Semantics sometimes a bit murky (consider metrics)
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Why co-scheduled containers?

Easy argument for legacy systems

- Ifit ain’t broke, don’t fix it!
Avoid tight coupling at code level

- Changing application logging code

- Move tight coupling to interface level (up the stack)
Easier to test and validate

- Separate life cycle from core application
Shareable across services as containers

- Container-level re-use!
Reduced variability for service core
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