
Extending to 
multiple nodes
14.2.2019
Santeri Paavolainen



Overview

- Previously “single-node” patterns
- Extend now to consider multiple nodes

- Multiple instances, multiple pods
- Within the context of a single service with unified interface
- … although ambiguous where boundary across services lies …

- Covers a wide variety of scalable, fault-tolerant and resilient 
patterns

- Load balancing, replication, sharding, stateless and stateful service 
scaling, etc.

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

2



Single node vs. multi-node patterns

- Single node patterns retain applicability
- Ambassadors and adapters abstracting away system-wide changes

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

3

Frontend

Backend

Frontend Cache Frontend Cache Proxy 
(ambassador) CacheFrontend Cache Proxy 
(ambassador) Cache Frontend Cache Proxy 

(ambassador)
Cache
shard

Cache
shard

Cache
shard



Stateless and stateful services

- Perhaps easiest to understand:
- Service is stateless if you do not lose data if service disappears
- (never ever — backups don’t help, they have latency and can fail too)

- Contrary, service is stateful if losing data causes some form of loss
(performance, consistency, monetary, data ...)

- Really applies only to persistent state: systems have lots of 
transient state

- Results from downstream microservice before passed upwards

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

4



State in distributed systems

- Even discounting all failures, state has its problems

- Often infeasible to replicate data to all nodes
- Partitioning, sharding, partial replication— lead to data locality 

problems
- Synchronization when changed

- Ensuring persistence
- Access to stale data

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

5



Sessions

- “Session” is state tied to specific requestor
- Any form of identifier token passed from client works
- Often stored as signed tokens in HTTP cookies (but not always)
- We are interested in server-side sessions

- Should differentiate between “transient session state”
- Loss of transient state not problematic (e.g. cached data)
- We are interested in persistent session state (cart, UI state)
- Remember — loss of cart data can be linked to monetary losses
- Differing priorities — user’s geolocation ≺ shopping cart ≺ purchase history

(think about data persistence SLA!!!)

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

6



Load-balanced services

- Multiple identical stateless 
services

- Send requests according to 
some policy (RR, random, 
LRU, …)

- Service is replicated, 
functionally identical portions 
duplicated

Load 
balancer

Service 
replica 1

Service 
replica 2

Service 
replica N

Req#1 Req#2 Req#3

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

7



Load-balanced services

- Multiple identical stateful
services

- Identify a session key
- Send request to backend 

identified by the session key
- If not identified, use some 

policy (like before)
- Problems

- Hot replica
- Key redistribution

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

8

Load 
balancer

Service 
replica 1

Service 
replica 2

Service 
replica N

Req#1 Req#2 Req#3

Session



Caching
- Stateless data may still be 

expensive
- Borrow from dynamic 

programming: don’t recompute
- Algorithm: 1. If already 

computed, skip to 4. 2. Compute 
result. 3. Store result in cache. 
4. Return result.

- Lots of details omitted: how to 
identify a specific computation; 
how long to hold to a result; how 
to avoid storing data indefinitely; 
what to do if space runs out; 
security considerations; …

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

9

FrontendCache

Service

Requests

Cache
misses

Cache
hits

Cache
backfill



13.2.2019
COM-EV Microservice architectures and serverless computing 2019

10

Load 
balancer

Web cache Web cache

Service 
replica

Service 
replica

Service 
replica

Which is the 
microservice 
boundary? Red
or blue?

Why?



Sharding

- Distribute requests to 
specific backend

- Use sharding function
mapping a sharding key to 
shard index

- Non-sequential keys hashed
- Consistent sharding functions 

(why modulo is not?)

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

11



Sharded services

- A category of service brokering
- Usually used for sharding of data

- 100 servers x 100 TB = 10 PB
- Contrast with replication

- Problems
- Hot keys and hot shards
- Keyspace changes (need for consistent sharding function)
- Persistence and reliability (shard replicas or replicate shards? à

development leads to systems such as Cassandra)

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

12



Scatter-Gather

- Specific type of sharding & replication
- Distributed searching one of first large-scale applications (at 

Google)

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

13





Scatter-Gather

- Specific type of sharding & replication
- Distributed searching one of first large-scale applications (at 

Google)

- Contrasted to replication and sharding, the request is split 
into multiple sub-requests (scatter) whose results must be 
processed into final result (gather)

- Suitable for “embarrassingly parallel” problems

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

15



Service broker 

- General category for solutions where
- Requests are forwarded only to one target
- Target is defined by request context (session, URL, …)

- Sharding is one example
- Other examples

- Reverse proxy
- API gateway

- Why not UI frontends? Why not scatter-gather?

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

16



Is the API gateway
itself a microservice?
Why? Why not?



Scaling

- Statically resourced systems applicable if
- Load pattern is predictable and not highly variable

- Conversely many real-world problems don’t fit this
- Daily variation (night / day)
- Weekly variation (weekday /

weekend)
- Spikes and dips (black Friday,

Christmas)
- Long-term patterns (increased

popularity, viral effects)
- è Unused capacity è $£€ lost

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

18



Scaling

- Two different problems to solve: capacity and application
- Capacity problem:

- How to add (and remove) or alter physical capacity (cpu, disk)
- Manual process with physical servers, hence cloud services and 

machine-friendly management APIs
- Application problem:

- How the application adapts to capacity changes
- Node additions / removals — on-line or off-line process?
- Problem primarily for stateful services

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

19



Horizontal and vertical scaling

- Vertical scaling (going up!): bigger box
- Increase instance size, increase disk allocation, …

- Horizontal scaling (going sideways!): more boxes
- Add 1 box … add 1 box … add 1 box … repeat

- Of course it is possible to use both simultaneously

- ”Blast radius” describes area of impact of an failure
- “Larger instance” (vertical scaling) >> Lots of boxes
- SPOF database’s blast radius is easily the whole system

1-out-of-N stateful customer service affects 1/N customers 

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

20



Scaling automation

- A whole problem field in itself …
- Autoscaling solutions (AWS, GCP, Azure)

- Upscale and downscale triggers (CPU, network, request rate, …)
- Scaling actions (instance selection, termination policy etc.)

- Never ever use autoscaling in production without monitoring 
and alerting!

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

21



Moarrr patterrrrns!

- Microsoft Azure: Design Patterns
- Microservices.io: A pattern language for microservices

- Of course GoF, C2 Wiki etc. for more on patterns in general

13.2.2019
COM-EV Microservice architectures and serverless computing 2019

22

https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://microservices.io/patterns/


Summary

- Single-node patterns useful for abstracting and extending 
applications 

- Without application code changes
- Exchange tight coupling at code level to tight coupling on interfaces

- Multi-node patterns are the toolbox for scalable and 
distributed services

- We’ll come back to more but those in this lecture are the most 
common building blocks

- Remember: DRY & NIH

14.2.2019
COM-EV Microservice architectures and serverless computing 2019

23


