Comfortable and Healthy Indoor Climate EEN-E4001

Exercise 4 for Lecture 4/2019

Return date 6.2.2019

1. LCC :

Carry out a ten years LCC calculation for a filter with the following assumptions.

Interest rate	6%
Air flow	1 m ³ /s (constant)
Running time	6000 hours per year
Fan efficiency	$\eta = 0.5 \ (50\%)$
Energy cost	0.10 €kWh (increasing 5% per year)
Filter:	
Investment	80 €including filter, frame and labour cost
Maintenance/ replacement	40 €(no price increase)
Lifetime of filter	6000 hours (1 year)
Average pressure drop	120 Pa
Disposal cost	4 €(increasing 5%)

 $C_p / C_n = [1 + (i - p)]^{-n}$

where

n = the number of years

- p = the price increase
- i = the interest rate (bank rate or any expected internal rate for investments within the company)
- C_n = the cost paid after "*n*" years

 C_p = the present cost of a single cost element, C_n

2. LCC:

Calculate the effect for the LCC breakdown if the filter price is doubled (80 \oplus) and the average pressure drop is reduced to 80 Pa. Compere the cost structure of the this design solution to the previous one.

3. Particle concentration level:

Dust is generated in the room with a rate of 10 mg/h. The dust concentration of outdoor air is 0.1 mg/m^3 . What is the concentration in the room:

(a) with supply air flow rate of 30 m³/h without cleaning the supply air flow

(b) with supply air flow rate of 30 m^3 /h and a filter in supply air flow reducing the concentration of dust in outdoor air with 50%

(c) exhaust airflow rate is constant 30 m^3 /h. There is infiltration of 0.3 1/h in the room of volume of 30 m³ and the rest of supply air is going through the filter (50 %).

(d) with supply air flow rate of 60 m³/h and outdoor air flow of 15 m³/h and a filter with efficiency of 50% in outdoor air flow and a filter with efficiency 80% in recirculation air flow

4. How much dust accumulates in a filter per week (15 h/d, 5 days a week) if its removal efficiency is 80%, the outdoor air has a concentration of 100 μ g/m³ and the air flow is 1 m³/s?