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GIS-E3010 Least-Squares 
Methods in Geoscience

Lecture 5
Petri Rönnholm
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Learning objectives

• To understand and apply 
– The solution of exterior orientation parameters
– The solution of relative orientation parameters 
– The solution of forward intersection parameters 

(3D point)
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Exterior orientation
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Exterior orientation
• Known/measured object coordinates XYZ
• Measure image coordinates (xy) of known points
• Solve six parameters of orientation (the location of the 

projection center and the rotation angles of the image)
– Interior orientation is expected to be known, and corrected 

• Collinearity equations

• There are 2 equations per point, and we have 6 unknowns  => 
at least 3 points are needed (3x2=6)
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Collinearity equation
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Exterior orientation
• Assume object points to be constants (extremely accurate 

points) => an explicit non-linear model. Alternatives: 
– LS adjustment with observation equations. Object points are constants. 
– Weighted LS adjustment with observation equations. Both exterior 

orientation parameters and object points are unknowns. For object 
points, we write additional constraints equations that are given very 
high (∞) weights in the adjustment.

• Object coordinates are also observations (less accurate ground 
measurements) => a non-linear mixed model. Alternatives:
– Weighted least squares (LS) adjustment with observation equations. We 

add additional constraints equations of object coordinates. Weights are 
proportional to accuracy! 

– General LS adjustment
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Exterior orientation, Object points 
are constants

• After the linearization,

in which i.e. the 
values of collinearity equations calculated using the 
current approximate values of parameters
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Correction vector

Exterior orientation, Object points 
are constants

• The error equation becomes

We get residuals of image observations and 
• In this case, the redundancy of equations (the number of 

observations – the number of parameters) is (N = the 
number of observations between an image and object 
points)
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Exterior orientation, Partial 
derivatives of rotation matrix

• When we linearize the collinear equations, we have to 
make partial derivations of a 3D rotation matrix

• To assist this task, we examine what happens when a 
rotation matrix is partially derivated with respect to 
omega, phi, kappa (rotations)

• A 3D rotation matrix is (rotations happen around 
moving axes) 
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Exterior orientation, Partial 
derivatives of rotation matrix

• The first example: partial derivative with respect to an 
omega rotation

• We have to make derivation to only one of the sub-
matrices Rω . In addition, we detect that the result of the 
derivation can, actually, be expressed by using the 
original rotation matrix Rω and an assisting matrix    
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Exterior orientation, Partial 
derivatives of rotation matrix

• Corresponding partial derivatives with respect to 
phi and kappa rotations are:

• As a conclusion, we can express all three partial 
derivatives by using the original 3D rotation 
matrix and a proper assisting matrix
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Exterior orientation, 
Linearization of collinearity equations 
• For a while, we shorten the collinearity equations

by introducing new variables

• Therefore, variables U (numerator), V (numerator) and W
(denominator) are (temporarily, we take these out from the 
context for partial derivations)
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Exterior orientation, 
Linearization of collinearity equations 
• Partial derivation of collinearity equations can 

be done by using following rules of partial 
derivatives of quotients
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In these equations, p symbolizes any parameter 
with respect to we make partial derivation (i.e. 
omega, phi, kappa, X0, Y0, Z0, X, Y, Z)

Exterior orientation, 
Linearization of collinearity equations 

• Case X0: the partial derivatives of U, V and W (with 
respect to X0

• The result after substituting partial derivatives is
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Exterior orientation, 
Linearization of collinearity equations 

• Case X:

• The result is
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Exterior orientation, 
Linearization of collinearity equations 

• Case omega: At first, we make partial derivation to U, V and W 
(with respect to omega)

• These results are then placed in the equation
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Exterior orientation, 
Linearization of collinearity equations 

• The result is:
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Correspondingly, we should solve partial derivatives with respect 
to phi, kappa, Y0, Z0, Y and Z.

Exterior orientation, 
Object points are constants

• This method is obviously iterative (non-linear). This 
means that we have to give some initial values 
(relatively good ones) to each parameter, and after 
several iteration rounds, we approach close to the 
correct solution of unknown parameters (until the 
corrections become very small ones) 

• The correction vector      is computed by using LS 
adjustment with observation equations, and these 
corrections are added to current approximate values 
of parameters (l=image observations. f 0=estimated 
image observations)

18
)()(ˆ 01 flAAAx TT −= − ( ) yAAAx TT 1ˆ −=

x̂



10

















−

−
−























































∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
















0

0

0

0

0

000

000

y

x

yyyyyyyyy

xxxxxxxxx

y

x

fy

fx

dZ
dY
dX
dZ
dY
dX
d
d
d

Z
f

Y
f

X
f

Z
f

Y
f

X
ffff

Z
f

Y
f

X
f

Z
f

Y
f

X
ffff

v

v
κ
ϕ
ω

κϕω

κϕω

Exterior orientation, 
Object coordinates are also observations
• In following, a method (also iterative) in which, in addition to 

image observations (x,y), also object space coordinates (X,Y,Z) 
are considered to be observations (e.g. GPS measurement). 
This requires so called combined LS adjustment    

• Linearized error equations become now as

19
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Exterior orientation, 
Object coordinates are also observations
• Error equation
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Exterior orientation, Object 
coordinates are also observations

• In this case, we need additional error equations of 
object coordinate observations for the combined LS 
adjustment

• The combined LS adjustment can be solved (P = a 
weight matrix)
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Exterior orientation, Object 
coordinates are also observations

• Weights Px (a diagonal matrix) of object 
coordinates are proportional to accuracy!   

• Example: We assume that the standard deviation 
of image coordinate observations (unit: mm) is 
0.005mm (5 μm), and the standard deviation of 
object coordinate observations (unit: m) is 0.01m 

• If we select image coordinate observations as a 
unit of weight (weight=1), we get the weight of 
object coordinate observations as (unit               )

• Redundancy is 

22
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Exterior orientation, Object 
coordinates are also observations

• An alternative to the combined LS adjustment 
is to solve the problem by using an implicit 
model

• However, this leads to the general LS 
adjustment (4 observations/equation), which 
is more complicated than the (combined) LS 
adjustment with observation equations

23
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Exterior orientation, Direct solutions
• So far least-squares solutions were applied to linearized non-linear 

models
• Such solutions require good initial values. To get initial 

approximation we need direct methods, in which solution doesn’t 
require iteration

• Direct methods are usually not as accurate than indirect (iterative) 
methods 

• Examples of direct methods 
– A pyramid method (Presented in the course Photogrammetry, Laser 

Scanning and Remote Sensing, also available in Kraus, 2007, 
Photogrammetry, Vol. 2, pp. 48-58)

– A method basing on vanishing lines (requires such objects that has 
perpendicular break-lines, such as buildings)

24
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Change of exterior orientation when the object 
coordinate system is transformed

• Let’s make a similarity transformation to the object 
coordinate system (scaling, rotation and translation)

• When this is placed in the collinearity equations

, we get 
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Change of exterior orientation when the object 
coordinate system is transformed

• In the equation

– A new scale is 
– A new rotation matrix is 
– A new location of projection center is

• Using these equation, you can calculate the 
exterior orientation of images when you know 
the relative and absolute orientation of images 
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Relative orientation

27

Relative orientation
• In relative orientation, we try to solve relative 

location and attitude between two images 
(observation rays)

• We have several alternative methods to solve 
relative orientation 

• First of all, we can select our mathematical 
model to be
– Coplanarity condition
– Collinearity condition

28
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Relative orientation
• In both cases, we can select parameters to be solved 

with several variations (we define the model 
coordinate system i.e. remove datum defect =7) 
– Relative orientation of successive images: we fix 

(i.e. left image+ X component of base) 
and solve 

– Relative orientation by rotations of the images: we fix 
(base and rotation around the base) and solve

– Minimum norm method: a unique solution is ensured by 
using minimum norm condition , in which p is a 
vector that includes 12 exterior orientation parameters 
(and possibly also coordinates of object points). 

29
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p = min

Datum defect
• In relative orientation, image observations 

give no information about a 7-parameter 
transformation of the object coordinate 
system, because we measure only 
corresponding points between images
– Scale, three rotations (e.g. omega, phi, kappa) and 

three shifts (e.g. X0, Y0, Z0)
– If we make any 3D measurements from stereo 

images (relative oriented), we’ll have an arbitrary 
scale and coordinate system

30
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Relative orientation of successive images, 
Coplanarity condition 

• Solution that is basing on the Coplanarity
condition relies on the fact that corresponding 
observation rays lay on the same plane
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Vectors b, U1 and U2 should lie on the same plane. If 
the volume of the parallelepiped (triple product) 
defined by these three vectors equals to zero, we 
know that the vectors lie at the same plane 

The Coplanarity Condition
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Relative orientation of successive 
images, coplanarity condition

• The observation vector of the left image
(rotations is fixed to zero)

• The observation vector of the right image
• Base vector
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Relative orientation of successive 
images, coplanarity condition

• A non-linear mixed model => linearization and the general LS 
adjustment

• Coplanarity equation
becomes after linearization (for one corresponding point pair)

• In which is the value of the 
coplanarity equation calculated using a current approximate 
values of parameters
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Relative orientation of successive images, 
coplanarity condition

• In the general LS adjustment, the corrections to 
parameters (dp) and observations (residuals, v ) and 
Lagrange multipliers (k) are solved from 

in which and a weight matrix P
usually equals to I (identity matrix)

36
















=































−

0

0

ˆ

ˆ
ˆ

00
0

0
h

pd
k
v

D
DC

CP

T

T

)(),( 000 llCxlGh T −−−=





















−
−
−
−













∂
∂

∂
∂

∂
∂

∂
∂

−−=

0
22

0
22

0
11

0
11

2211

jj

jj

jj

jj

j

j

j

j

j

j

j

j
jj

yy
xx
yy
xx

y
G

x
G

y
G

x
G

Gh


















=

nh

h
h

h

2

1

ldv =ˆ



19

Relative orientation of successive images, 
coplanarity condition

• In addition, design matrices are
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The design matrix of observations

The design matrix 
of orientation 
parameters

Relative orientation of successive 
images, coplanarity condition

• Equations have to be linearized by computing partial derivatives 
with respect to all unknown parameters 

• As an example, here we present only the partial derivation of the 
coplanarity equation with respect to a parameter by

• Because parameter  by exists only in one row (in the determinant 
form), we are able to make partial derivation separately to that row, 
and after that to calculate the determinant 

• In the case of rotations, we can use previously presented methods 
how to make partial derivatives of 3D rotation matrices with 
respect to rotation angles
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Relative orientation of successive images, 
coplanarity condition

• Step-by-step solution is
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Corrections to image 
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Relative orientation of successive images, 
coplanarity condition

• Again, the method is iterative and therefore we need 
initial values to parameters 

• One method to get approximate values is to use a 
linear (projective) method (corresponding points →
epipolar matrix → physical parameters)

• After each iteration round, new approximations to 
parameters are calculated 

• If the number of measured corresponding points is n, 
redundancy is

40

)()1()( kkk dppp += −

)()1()( kkk vll += −

5−= nr



21

Relative orientation of successive images, 
collinearity condition

• The relative orientation of successive images can be 
established also by using the collinearity equations 
(instead of the coplanarity equations)

• This method is called as the relative orientation with 
the bundle block method, because it is only a special 
case of bundle block adjustment (the number of 
images is only two)

41

Relative orientation of successive images, 
collinearity condition

• In this case, we have to linearize collinearity equations (with 
respect to unknown parameters)

• The result of linearization is (for one corresponding point pair)
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Relative orientation of successive images, 
collinearity condition

• In these equation, values of the collinearity equations are 
calculated using current approximations of parameters

• In a design matrix, two first rows are associated to one 
image (because the coordinate system is set to the camera 
coordinate system of this image, we don’t have to solve 
its rotations or translations -> = 0) 

• Next two rows are associated to another image (the 
adjacent image to the first one) 
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Relative orientation of successive images, 
collinearity condition

• A solution can be calculated using LS adjustment with 
observation equations

• Notice that object coordinates are now included in 
adjustment. Therefore, we need approximate values 
also for them

• However, there is a possibility to eliminate object 
points from the normal equation

• As a result, we get a reduced normal equation, from 
which we can solve five orientation parameters

• If the number of corresponding points is  N => we get       
equations => unknowns => should 

be             in order to get redundancy

44
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Space intersection

45

Space intersection
• We know (interior and) exterior orientation of 

images
• We measure image observations (image coordinates) 

of a common object point from two or more images 
• We solve object coordinates (X,Y,Z)
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Space intersection
• The collinearity equations are used as the 

mathematical model 

• After the linearization (X, Y and Z are unknown 
parameters), we get normal equations (indices: 
image i, object point j )
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Space intersection
• In error equations, values of the collinearity 

equation are computed by using approximate 
values of parameters 

• 3 unknowns
• 2 equations/images
• overdetermined, if we have at least two images
• Iterative LS solution 
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Space intersection, 
alternative solution

• We modify the collinearity equations to the form

and furthermore

• When image coordinates  (x,y) of an unknown object 
point are measured from          images, we can solve 
object coordinates directly without iterations or initial 
values (we get 2N linear equations)
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Space intersection, accuracy
• The accuracy of object points is dependent on

– Measuring accuracy
– The number of intersecting rays 
– Scale (c/Z)
– Geometry of intersecting rays (imaging geometry)

• The effect of geometry :
– Planimetric accuracy is linearly dependent on Z. The 

best geometry is achieved when  X=Y=0.
– Height accuracy is proportional to  
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