GIS-E3010

Least-Squares Methods in Geoscience Lecture 9/2018

Local area 3D terrestrial network adjustment
About GPS-baseline processing

Context, motivation

- Local area networks
- Local reference frame or connection global
- For construction work
- For monitoring
- Special purpose networks
- Industrial measurements

- Networks form a control for laser scanning or photogrammetry
- Small area networks
- Terrestrial (tachymeter) 3D networks are nowadays mostly used for precision measurements, like monitoring measurements in small area. (Maximum 1 square kilometer)
- Distances between points only $5 \mathrm{~m}-200 \mathrm{~m}$
- The uncertainty of refraction does not dominate in vertical angles (like in the case of larger networks with vertices several kilometers) and they are as usefull in adjustment as the horizontal angles and distances

Local area network in global frame

$$
\begin{aligned}
& \alpha=\tan ^{-1}\left(\frac{e}{n}\right) \\
& \beta=\sin ^{-1}\left(\frac{u p}{s}\right) \\
& s=\sqrt{\mathrm{d} u^{2}+\mathrm{d} v^{2}+\mathrm{d} w^{2}}=\sqrt{n^{2}+e^{2}+u p^{2}}
\end{aligned}
$$

$$
\mathrm{R}(\varphi, \lambda)=\left(\begin{array}{ccc}
-\sin \varphi \cos \lambda & -\sin \varphi \sin \lambda & \cos \varphi \\
-\sin \lambda & \cos \lambda & 0 \\
\cos \varphi \cos \lambda & \cos \varphi \sin \lambda & \sin \varphi
\end{array}\right)
$$

$$
\left(\begin{array}{l}
\mathrm{d} n \\
\mathrm{~d} e \\
\mathrm{~d} u p
\end{array}\right)=\mathrm{R}(\varphi, \lambda)\left(\begin{array}{l}
\mathrm{d} u \\
\mathrm{dv} \\
\mathrm{dw}
\end{array}\right)
$$

Model

$\alpha_{0}=\alpha-t_{0}$
$\alpha=\tan ^{-1}\left(\frac{-\sin (\lambda) \cdot \mathrm{d} u+\cos (\lambda) \cdot \mathrm{d} v}{-\sin (\varphi) \cdot \cos (\lambda) \cdot \mathrm{d} u-\sin (\varphi) \cdot \sin (\lambda) \cdot \mathrm{d} v+\cos (p) \cdot \mathrm{d} w}\right)$
$\beta=\sin ^{-1}\left(\frac{\cos (\varphi) \cdot \cos \cdot \mathrm{d} u+\cos (\varphi) \cdot \sin (\lambda) \cdot \mathrm{d} v+\sin (\varphi) \cdot \mathrm{d} w}{|(\mathrm{~d} u \mathrm{~d} v \mathrm{~d} w)|}\right)$
$\left.s=\left\lvert\, \begin{array}{lll}\mathrm{d} u & \mathrm{~d} v & \mathrm{~d} w\end{array}\right.\right) \mid$

Deflection of vertical correction is necessary because the normal of the reference ellipsoid and the normal of the geoid are not same. We assume that we have oriented to gravity our istruments and targets.

Corrections to observations before adjustment:

- Deflection of vertical (to horizontal and vertical angles)
- Refraction (to vertical angle)
- The first velocity correction (to distances)
- In larger networks more corrections are needed (2. velocity, curvature)
- Centering elements and their covariance matrix must be converted to global system (NEU to UVW and UVW to φ, λ, h conversions with covariances)

3D model for terrestrial network in global coordinate system, partial derivates

$$
\begin{aligned}
& g 11=\frac{\partial \alpha}{\partial u_{1}}=-\frac{\partial \alpha}{\partial u_{2}}=\frac{(-\sin (\varphi) \cdot \cos (\lambda) \cdot \sin (\alpha)+\sin (\lambda) \cdot \cos (\alpha))}{(s \cdot \cos (\beta))} ; \\
& g 12=\frac{\partial \alpha}{\partial v}=-\frac{\partial \alpha}{\partial v_{2}}=\frac{(-\sin (\varphi) \cdot \sin (\lambda) \cdot \sin (\alpha)-\cos (\lambda) \cdot \cos (\alpha))}{(s \cdot \cos (\beta))} ; \\
& g 13=\frac{\partial \alpha}{\partial w_{1}}=-\frac{\partial \alpha}{\partial w_{2}}=\frac{(\cos (\varphi) * \sin (\alpha))}{(s \cdot \cos (\beta))} ; \\
& g 14=\frac{\partial \alpha_{0}}{\partial t_{0}}-1 \text {; } \\
& g 21=\frac{\partial \beta}{\partial u_{1}}=-\frac{\partial \beta}{\partial u_{2}}=\frac{(-s \cdot \cos (\varphi) \cdot \cos (\lambda)+\sin (\beta) \cdot \mathrm{d} u)}{\left(s^{2} \cdot \cos (\beta)\right)} ; \\
& g 22=\frac{\partial \beta}{\partial v}=-\frac{\partial \beta}{\partial v_{2}}=\frac{(-s \cdot \cos (\varphi) \cdot \sin (\lambda)+\sin (\beta) \cdot \mathrm{d} v)}{\left(s^{2} \cdot \cos (\beta)\right)} ; \\
& g 23=\frac{\partial \beta}{\partial w_{1}}=-\frac{\partial \beta}{\partial w_{2}}=\frac{(-s \cdot \sin (\varphi)+\sin (\beta) \cdot \mathrm{d} w)}{\left(s^{2} \cdot \cos (\beta)\right)} ; \\
& g 31=\frac{\partial s}{\partial u_{1}}=-\frac{\partial s}{\partial u_{2}}=-\frac{\mathrm{d} u}{|(\mathrm{~d} u \mathrm{~d} v d \mathrm{~d} w)|^{\prime}} ; \\
& g 32=\frac{\partial s}{\partial v_{1}}=-\frac{\partial s}{\partial v_{2}}=-\frac{d u}{|(d u d v d w)|} ; \\
& g 33=\frac{\partial s}{\partial w_{1}}=-\frac{\partial s}{\partial w_{2}}=-\frac{d u}{|(d u d v \quad d w)|} ; \\
& \text { It is quite easy to add new observation types: } \\
& \text { Height differences, coordinate differences... } \\
& B_{i}=\left(\begin{array}{llllllrrr}
g 11 & g 12 & g 13 & -g 11 & -g 12 & -g 13 & -1 & 0 & 0 \\
g 21 & g 22 & g 23 & -g 21 & -g 22 & -g 23 & 0 & -1 & 0 \\
g 31 & g 32 & g 33 & -g 31 & -g 32 & -g 33 & 0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

Example network

Red: station points, two setups at each station points
Blue: prism points

Example network

from	to	$\alpha_{0 o b s}$	$\beta_{\text {obs }}$	$S_{\text {obs }}$	σ_{α}	β_{β}	σ_{s}	$h_{s p}$	$h_{t p}$
1	2	303.4648	91.12726	12.66408	0.0003	0.0005	0.00032	1.4887	1.4619
1	10	333.6974	78.90239	0	0.0003	0.0005	100.0003	1.4887	0
1	0	369.1179	89.32862	12.84218	0.0003	0.0005	0.00032	1.4887	0
1	3	378.2358	99.35329	16.91204	0.0003	0.0005	0.00032	1.4887	1.4719
1	2	41.00568	91.34972	12.65804	0.0003	0.0005	0.00032	1.489	1.4168
1	10	71.23692	78.8885	0	0.0003	0.0005	100.0003	1.489	0
1	0	106.6563	89.32219	12.84244	0.0003	0.0005	0.00032	1.489	0
1	3	115.7755	99.33971	16.91205	0.0003	0.0005	0.00032	1.489	1.4756
2	3	23.72309	105.8412	16.78997	0.0003	0.0005	0.00032	1.4144	1.4749
2	0	32.58689	97.79492	12.43505	0.0003	0.0005	0.00032	1.4144	0
2	10	42.9914	81.64232	0	0.0003	0.0005	100.0003	1.4144	0
2	1	100.3017	108.622	12.65716	0.0003	0.0005	0.00032	1.4144	1.4936
2	3	147.661	105.7652	16.78828	0.0003	0.0005	0.00032	1.4201	1.5026
2	0	156.5248	97.82854	12.43496	0.0003	0.0005	0.00032	1.4201	0
2	10	166.9293	81.72781	0	0.0003	0.0005	100.0003	1.4201	0
2	1	224.2395	108.6503	12.65797	0.0003	0.0005	0.00032	1.4201	1.4943
3	1	242.0176	100.8088	16.91266	0.0003	0.0005	0.00032	1.5031	1.4756
3	0	266.9403	75.23898	5.11965	0.0003	0.0005	0.00032	1.5031	0
3	10	280.789	82.16708	0	0.0003	0.0005	100.0003	1.5031	0
3	2	290.666	94.37759	16.7844	0.0003	0.0005	0.00032	1.5031	1.3847
3	1	375.5538	100.8701	16.91306	0.0003	0.0005	0.00032	1.5178	1.4766
3	0	0.480085	75.42832	5.11365	0.0003	0.0005	0.00032	1.5178	0
3	10	14.32567	82.25481	0	0.0003	0.0005	100.0003	1.5178	0
3	2	24.2044	94.45305	16.7829	0.0003	0.0005	0.00032	1.5178	1.3814

B-matrix

$$
B_{i}=\left(\begin{array}{llllllrrr}
g 11 & g 12 & g 13 & -g 11 & -g 12 & -g 13 & -1 & 0 & 0 \\
g 21 & g 22 & g 23 & -g 21 & -g 22 & -g 23 & 0 & -1 & 0 \\
g 31 & g 32 & g 33 & -g 31 & -g 32 & -g 33 & 0 & 0 & -1
\end{array}\right)
$$

Observations to one target

Observation from one station point

Number of rows equals to number of all angle and distance measurement in network

Number of columns equals to number of all centerings elements plus angle and distance measurement in network

Cofactor matrix of observationsQ

$$
Q_{o b s}=B \Sigma_{c x, c y, c z, \alpha, \beta, s} B^{T}
$$

Observations from one station point are correlating

$$
\begin{aligned}
& \boldsymbol{P}=\boldsymbol{Q}_{\boldsymbol{o b s}}{ }^{-\mathbf{1}} \\
& {\sigma_{0 a p r i}}^{2}=1
\end{aligned}
$$

Number of rows and columns equal to number of angle and distance observations in network

A-matrix

$$
A_{i}=\left(\begin{array}{ccccccc}
g 11 & g 12 & g 13 & -g 11 & -g 12 & -g 13 & g 14 \\
g 21 & g 22 & g 23 & -g 21 & -g 22 & -g 23 & 0 \\
g 31 & g 32 & g 33 & -g 31 & -g 32 & -g 33 & 0
\end{array}\right)
$$

Observatons to one target points

Observations from one station point

Number of rows equals to Number of angle and distance observations (equations in network)

Number of columns equals to number of coordinates and orientation unknowns in network

y-vector

$$
\begin{aligned}
& y_{\alpha_{0 i j}}=\alpha_{0_{o b s}}-\alpha_{0}\left(u_{i}+c_{u i}, v_{i}+c, w_{i}+c_{w i}, u_{j}+c_{u j}, v_{j}, w_{j}+c_{w j}, t_{0 i}\right) \\
& y_{\beta_{0 i j}}=\beta_{o b s}-\beta\left(u_{i}+c_{u i}, v_{i}+c, w_{i}+c_{w i}, u_{j}+c_{u j}, v_{j}, w_{j}+c_{w j}\right) \\
& y_{s_{0 i j}}=s_{o b s}-s\left(u_{i}+c_{u i}, v_{i}+c, w_{i}+c_{w i}, u_{j}+c_{u j}, v_{j}, w_{j}+c_{w j}\right)
\end{aligned}
$$

Observed minus calculated for all observations. Size of y-vector is number of angle and distance measurement in network times one. The centering elements (in global system) are added to approximative coordinates

N -matrix without constraints

We have as many rows and colums as there are unknown parameters, here number of coordinates plus number of orientation unknowns

3D model for network with tilted polar instruments

- Instruments are not levelled, they can be in arbitary attitude.
- R_{i} is rotation from object coordinate system to instrument coordinate system
- $R a$ is rotation around the primary axis.
- $R z$ is rotation around the secondary axis.
- $d R 1, d R 2, d R 3$ are 3×3 matrices with partials of three rotation angles (Partial derivates are taken element by element of Ri.)
- k is distance and $R a * R z$ include the angle observations, $E O$ and E are eccentric vector of the instrument in instrument system and p is unit vector of aiming in zero angle position
- The observations of one station are correlated
- Suitable for industrial measurements

3D model for network with tilted polar instruments

$$
Q_{o b s i}=Q_{o b s}=B \Sigma_{c x, c y, c z, a l f a, z e n, k} B^{T}
$$

```
y-vector
yi=(k*Ra*Rz*p)-Ri*(X-X0) + E0 - E;
A-matrix
#X0
    A11 = -Ri;
#X
    A12 = Ri;
#Ri
    A13 = [dR1 * (X - X0),dR2 * (X - X0),dR3 * (X - X0)];
#
    Ai = [A11,A12,A13];
```


B-matrix

\#alfa

$$
B 13=-k * d R a * R z * p ;
$$

\#zen

$$
B 14=-k * R a * d R z * p ;
$$

\#k

$$
B 15=-R a * R z * p ;
$$

\#EO

B11 = -eye(3);
\#E

$$
\begin{aligned}
& B 12=\operatorname{eye}(3) \\
& \# \\
& B i=[B 11, B 12, B 13, B 14, B 15] ;
\end{aligned}
$$

- Instruments are not levelled, they can be in arbitary attitude.
- $\quad R_{i}$ is rotation from object coordinate system to instrument coordinate system
- $R a$ is rotation around the primary axis.
- $R z$ is rotation around the secondary axis.
- $\quad d R 1, d R 2, d R 3$ are 3×3 matrices with partials of three rotation angles (Partial derivates are taken element by element of Ri.)
- $\quad \mathrm{k}$ is distance and $R a * R z$ include the angle observations, $E O$ and E are eccentric vector of the instrument in instrument system and p is unit vector of aiming in zero angle position
- The observations of one station are correlated

A-matrix (an example)

Structure of N with constraint equations

Constraints: in this case we have 6 (3 rotations and 3 translations)

One point in this network is not a datum point

Algorithm

1. Read initial coordinates
2. Read datum points
3. Read observations, centering and precision of observations and centering elements
4. Form A, B, Qobs, P, y
5. Calculate normal matrix $N=A^{T} P A$ and normal equation vector $t=A^{T} P y$
6. Add datum information (3 translations and 1 rotation) to normal equations. Constraints or fixed points.
7. Solve for the corrections to initial values and add them to initial values
8. Iterate (back to 3) with new approximative values until corrections practically zeros
9. Precision, reliability, residuals, outliers

Double difference observations

Observations, unknowns, model constants

- Observations: double differences of phase observations
- Constants ?: Coordinates of satellites from pre calculated orbits
- Unknown parameters: Coordinates of the points

Double differences are linear combinations of phase observation

- We can form $T(S-1)(R-1)$ linearily indipendent double differences per frequency

$$
\begin{aligned}
& D_{12}^{12}=\left(\varphi_{2}^{2}-\varphi_{1}^{2}\right)-\left(\varphi_{2}^{1}-\varphi_{1}^{1}\right) \\
& D_{13}^{12}=\left(\varphi_{3}^{2}-\varphi_{1}^{2}\right)-\left(\varphi_{3}^{1}-\varphi_{1}^{1}\right) \\
& D_{12}^{13}=\left(\varphi_{2}^{3}-\varphi_{1}^{3}\right)-\left(\varphi_{2}^{1}-\varphi_{1}^{1}\right) \\
& D_{13}^{13}=\left(\varphi_{3}^{3}-\varphi_{1}^{3}\right)-\left(\varphi_{3}^{1}-\varphi_{1}^{1}\right) \\
& D_{12}^{14}=\left(\varphi_{2}^{4}-\varphi_{1}^{4}\right)-\left(\varphi_{2}^{1}-\varphi_{1}^{1}\right)
\end{aligned}
$$

- S is number of satellites, R is number of receivers, T number of epochs
- Here double differences are formed for three receivers one epoch and four satellites (one frequency)

$$
\Sigma_{D t}=J \sum_{\phi} J^{T}
$$

$$
J=\left(\begin{array}{cccccccccccc}
1 & -1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
1 & 0 & 0 & -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1
\end{array}\right)
$$

$$
P_{t}=\Sigma_{D t}^{-1} \quad \text { Weight matrix for epoch } \mathrm{t}
$$

Functional model

$$
\varphi_{r}^{s}(t)=-\frac{f}{c} s_{r}^{s}-f\left(\delta^{s}-\delta_{r}\right)-\frac{f}{c}\left(-d_{\text {ion }}+d_{\text {trop }}\right)+N_{r}^{s} \quad \text { Phase observation }
$$

$$
\phi_{r}^{s}(t)=s_{r}^{s}+c\left(\delta^{s}-\delta_{r}\right)-d_{i o n}+d_{t r o p}+\lambda N
$$

Phase in metric form

$$
\begin{aligned}
D_{k m}^{p q} & =\left(\phi_{m}^{q}-\phi_{k}^{q}\right)-\left(\phi_{m}^{p}-\phi_{k}^{p}\right) \\
& =s_{k m}^{p q}+\lambda N_{k m}^{p q} \\
f_{D_{k m}^{p q}} & =\left(s_{m}^{q}-s_{k}^{q}\right)-\left(s_{m}^{p}-s_{k}^{p}\right)+\lambda N_{k m}^{p q}-D_{k m}^{p q}=0
\end{aligned}
$$

$$
s_{r}^{s}=\sqrt{\left(X^{s}-X_{r}\right)^{2}+\left(Y^{s}-Y_{r}\right)^{2}\left(Z^{s}-Z_{r}\right)^{2}}
$$

Distance between satellite and receiver antenna

Design matrix and y-vector for epoch t

$$
A_{D_{\varphi p}}=\left(\begin{array}{cccccccccccc}
\frac{\partial f_{D_{12}^{12}}}{\partial X_{2}} & \frac{\partial f_{D_{12}^{12}}}{\partial Y_{2}} & \frac{\partial f_{D_{12}^{12}}}{\partial Z_{2}} & 0 & 0 & 0 & \lambda & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\partial f_{D_{12}}}{\partial X_{3}} & \frac{\partial f_{D_{13}^{12}}}{\partial Y_{3}} & \frac{\partial f_{D_{13}^{12}}}{\partial Z_{3}} & 0 & \lambda & 0 & 0 & 0 & 0 \\
\frac{\partial f_{D_{12}^{13}}}{\partial X_{2}} & \frac{\partial f_{D_{12}^{13}}}{\partial Y_{2}} & \frac{\partial f_{D_{12}^{13}}}{\partial Z_{2}} & 0 & 0 & 0 & 0 & 0 & \lambda & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\partial f_{D_{13}^{13}}}{\partial X_{3}} & \frac{\partial f_{D_{13}^{13}}}{\partial Y_{3}} & \frac{\partial f_{D_{13}}}{\partial Z_{3}} & 0 & 0 & 0 & \lambda & 0 & 0 \\
\frac{\partial f_{D_{12}^{14}}}{\partial X_{2}} & \frac{\partial f_{D_{12}^{14}}}{\partial Y_{2}} & \frac{\partial f_{D_{12}^{14}}^{\partial Z_{2}}}{0} & 0 & 0 & 0 & 0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \frac{\partial f_{D_{13}^{14}}}{\partial X_{3}} & \frac{\partial f_{D_{13}^{14}}^{\partial Y_{3}}}{\partial \partial_{D_{13}^{14}}^{\partial Z_{3}}} & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right) \quad y_{t}=-\left(\begin{array}{l}
f_{D_{12}^{12}} \\
f_{D_{13}^{12}} \\
f_{D_{12}^{13}} \\
f_{D_{13}^{13}} \\
f_{D_{12}^{14}} \\
f_{D_{13}^{14}}
\end{array}\right)
$$

Session solution

$$
\left(\begin{array}{c}
X_{2}-X_{2_{0}} \\
Y_{2}-Y_{2_{0}} \\
Z_{2}-Z_{2_{0}} \\
X_{3}-X_{3_{0}} \\
Y_{3}-Y_{3_{0}} \\
Z_{3}-Z_{3_{0}} \\
N_{12}^{12}-N_{120}^{12} \\
N_{13}^{12}-N_{130}^{12} \\
N_{12}^{13}-N_{120}^{13} \\
N_{13}^{13}-N_{130}^{13} \\
N_{12}^{14}-N_{120}^{14} \\
N_{13}^{14}-N_{130}^{14}
\end{array}\right)=\left(A^{T} P A\right)^{-1} A^{T} P y
$$

Corrections to initial values

Ambiguities are still floating points

Iteration needed (non-linear model)

Floating point ambiguites to fixed integer ambiguites

- Ambiguites are tried to fix to integer values
- There might be more than one possible set of integers. The best set gives minimum variance (For short vectors up to 30 km ambiguites should be found depending on the session length
- For long vectors it is not always possible to fix ambiguites
- New adjustment with fixed ambiguites

Covariance matrix of the

$$
v^{T} P v=\min
$$

Fixed-solution gives the coordinates (coordinate differences) and their covariances to GPSvector network adjustment.

 session solution:$$
\Sigma_{\Delta X \Delta Y \Delta Z}=\sigma_{0}^{2}\left(A^{T} P A\right)^{-1}
$$

Variance propagation

Covariance matrix from network adjustment

GNSS-vector network

Unknown: Coordinates of the points
Observations: Coordinate differences from vector processing $\Delta X, \Delta Y, \Delta Z$

Weighting: inverse of covariance matrix of vector components

Malli:

$$
\left.\begin{array}{r}
X_{j}-X_{i}-\Delta X_{i j}=0 \\
Y_{j}-Y_{i}-\Delta Y_{i j}=0 \\
Z_{j}-Z_{i}-\Delta Z_{i j}=0
\end{array}\right\}
$$

Number of vectors in adjustment

- In one session we get $\frac{R(R-1)}{2}$ vectors to networkadjustment but
- Only R-1 are linearly indipendent
- The rest of vectors $\frac{R(R-1)}{2}-(R-1)=\frac{R}{2}-1$ are so called trivial vectors
- The network should be measured (sessions should be planned) so that none of the vectors in network is trivial (see JHS184)
- We still take all possible vectors (also trivial ones), to network adjustment, because usual commercial vector processing softwares are not able to solve for covariances between vectors. (Scientific softwares can)
- If we choose vectors, we will lose information
- When we take all vectors we get false redundance and perhaps over optimistic variances.

Non trivial vectors in example network

Observations : $\Delta X, \Delta Y, \Delta Z$

Number of observations

From to	session
$1-3$	A
$1-2$	A
$2-3$	B
$2-5$	B
$1-4$	C
$1-5$	C
$4-5$	D

Number of all observations: 36

Simple combination models for GPS network

$$
s_{t}\left(\begin{array}{ccc}
1 & \kappa & -\phi \\
-\kappa & 1 & \omega \\
\phi & -\omega & 1
\end{array}\right)_{t}\left(\begin{array}{c}
X_{2 L}-X_{1 L} \\
Y_{2 L}-Y_{1 L} \\
Z_{2 L}-Z_{1 L}
\end{array}\right)-\left(\begin{array}{c}
\Delta X_{12 G P S} \\
\Delta Y_{12 G P S} \\
\Delta Z_{12 G P S}
\end{array}\right)_{t}=0
$$

- Functional model for GPS-vectors in observation epoch: each epoch has own rotation and scale
- Assumptions: between observation sessions rotation and scale difference but no deformation
- For small densification networks it is sufficient to assume no rotation or scale difference between epochs
- Rotation matrix is unit matrix and scale 1

$$
s\left(\begin{array}{ccc}
1 & \kappa & -\phi \\
-\kappa & 1 & \omega \\
\phi & -\omega & 1
\end{array}\right)\left(\begin{array}{c}
X_{2 L}-X_{1 L} \\
Y_{2 L}-Y_{1 L} \\
Z_{2 L}-Z_{1 L}
\end{array}\right)-\left(\begin{array}{c}
\Delta X_{12 G P S} \\
\Delta Y_{12 G P S} \\
\Delta Z_{12 G P S}
\end{array}\right)=0
$$

- Functional model for GPS-vectors in observation epoch: each epoch has same rotation and scale which differ from reference L
- Assumptions: between observation sessions no rotation and scale difference nor deformation, but there is rotation between GPS vectors and the reference system, but no deformation

SINEX-file

```
-SITE/ECCENTRICITY
+SOLUTION/EPOCHS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & _MEAN_EPOCH \\
\hline 1400 & A & 1 & P & 16:288:32310 & 16:289:86395 & 16:289:16152 \\
\hline 1406 & A & 1 & P & 16:288:32585 & 16:289:86395 & 16:289:16290 \\
\hline 1412 & A & 1 & P & 16:288:35685 & 16:289:86395 & 16:289:17840 \\
\hline 1424 & A & 1 & P & 16:288:31535 & 16:289:86395 & 16:289:15765 \\
\hline 1430 & A & 1 & P & 16:288:32035 & 16:289:86395 & 16:289:16015 \\
\hline 1436 & A & 1 & P & 16:288:31535 & 16:289:86395 & 16:289:15765 \\
\hline
\end{tabular}
-SOLUTION/EPOCHS
```

$\begin{aligned} & \text { +SOLUTI } \\ & \text { *INDEX } \end{aligned}$	$\begin{aligned} & \text { ION/ES } \\ & \text { TYPE } \end{aligned}$	IMATE CODE	PT	SOLN	REF_EPOCH	UNIT		ESTIMATED VALUE	D_DEV
1	STAX	1400	A	1	16:289:15750	m	0	0.289254960202000 $\overline{\mathrm{E}+07}$. $946520 \mathrm{E}-04$
2	STAY	1400	A	1	16:289:15750	m	0	$0.131180745749000 \mathrm{E}+07$	944962E-04
3	STAZ	1400	A	1	16:289:15750	m	0	$0.551263134307000 \mathrm{E}+07$. $948550 \mathrm{E}-04$
4	STAX	1406	A	1	16:289:15750	m	2	$0.289254744945638 \mathrm{E}+07$	$958337 \mathrm{E}-04$
5	STAY	1406	A	1	16:289:15750	m	2	$0.131180834485352 \mathrm{E}+07$. $951214 \mathrm{E}-04$
6	STAZ	1406	A	1	16:289:15750	m	2	$0.551263226844771 \mathrm{E}+07$. $979107 \mathrm{E}-04$
7	STAX	1412	A	1	16:289:15750	m	2	$0.289254910251813 \mathrm{E}+07$. $958584 \mathrm{E}-04$
8	STAY	1412	A	1	16:289:15750	m	2	$0.131181016583246 \mathrm{E}+07$. 951217E-04\|
9	STAZ	1412	A	1	16:289:15750	m	2	$0.551263096143799 \mathrm{E}+07$	979569E-04
10	STAX	1424	A	1	16:289:15750	m	2	$0.289255169261810 \mathrm{E}+07$. $958432 \mathrm{E}-04$
11	STAY	1424	A	1	16:289:15750	m	2	$0.131180648250172 \mathrm{E}+07$	951265E-04
12	STAZ	1424	A	1	16:289:15750	m	2	$0.551263047556758 \mathrm{E}+07$. $979165 \mathrm{E}-04$
13	STAX	1430	A	1	16:289:15750	m	2	$0.289254997521260 \mathrm{E}+07$. $958178 \mathrm{E}-04$
14	STAY	1430	A	1	16:289:15750	m	2	$0.131180508794785 \mathrm{E}+07$	$951116 \mathrm{E}-04$
15	STAZ	1430	A	1	16:289:15750	m	2	$0.551263171909886 \mathrm{E}+07$. $978960 \mathrm{E}-04$
16	STAX	1436	A	1	16:289:15750	m	2	$0.289254785993023 \mathrm{E}+07$. $958155 \mathrm{E}-04$
	STAY	1436	A		16:289:15750	m	2	$0.131180589355305 \mathrm{E}+07$. $951141 \mathrm{E}-04$
	STAZ	1436	A	1	16:289:15750	m	2	$0.551263263809010 \mathrm{E}+07$	978917E-04
-SOLUT	ION/E	MATE							
+SOLUTI	ION/AP	RI							
*INDEX	TYPE	CODE	PT	SOLN	REF_EPOCH	UNIT	5	APRIORI VALUE	STD_DEV
1	STAX	1400	A		16:289:15750	m	0	$0.289254960202000 \mathrm{E}+07$.997027E-04
2	STAY	1400	A	1	16:289:15750	m	0	$0.131180745749000 \mathrm{E}+07$. $995387 \mathrm{E}-04$
3	STAZ	1400	A	1	16:289:15750	m	0	$0.551263134307000 \mathrm{E}+07$. $999166 \mathrm{E}-04$
4	STAX	1406	A		16:289:15750	m	2	$0.289254745136000 \mathrm{E}+07$. $316228 \mathrm{E}+01$
5	STAY	1406	A	1	16:289:15750	m	2	$0.131180834595000 \mathrm{E}+07$. $316228 \mathrm{E}+01$
6	STAZ	1406	A		16:289:15750	m	2	$0.551263227181000 \mathrm{E}+07$. $316228 \mathrm{E}+01$
	STAX	1412	A	1	16:289:15750	m	2	$0.289254910503000 \mathrm{E}+07$. $316228 \mathrm{E}+01$
	STAY	1412	A	1	16:289:15750		2	$0.131181016717000 \mathrm{E}+07$. $316228 \mathrm{E}+01$
	STAZ	1412	A	1	16:289:15750	m	2	$0.551263096649000 \mathrm{E}+07$. $316228 \mathrm{E}+01$
	STAX	1424	A	1	16:289:15750		2	$0.289255169377000 \mathrm{E}+07$. $316228 \mathrm{E}+01$
	STAY	1424	A		16:289:15750	m	2	$0.131180648284000 \mathrm{E}+07$. $316228 \mathrm{E}+01$

Combination model

Combination Model: basic equations
TRF combination

