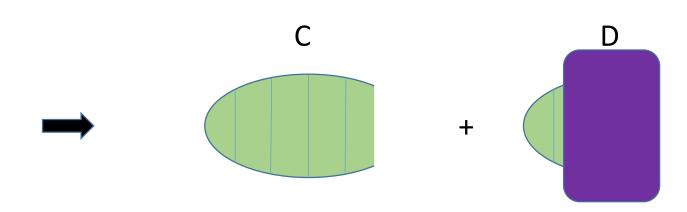
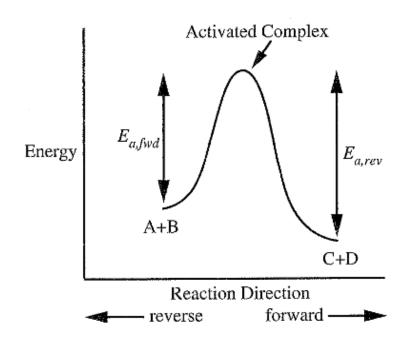
Reactions

WAT-E2120 Physical and Chemical Treatment of Water and Waste

Pirjo Rantanen Lic. Tech.

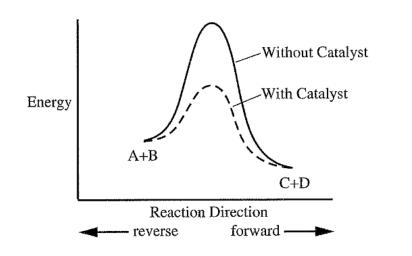

Aalto University

Reaction types


- Mixing no reaction
- Oxidation-reduction reactions
- Acid-base reactions
- Catalytic reactions
- Exothermic and endothermic reactions
- Precipitation reactions
- Electrochemical reactions
- ...

Reactions Activated complex В Α +**Reactive sites**

- Collisions of A and B enable the reaction
- Collisions of C and D enable the backwards reaction


Activation energy

Reaction A + B \leftrightarrow C + D

- E_a = activation energy = difference in energies of separate A and B and the energy of the activated complex
- $E_{a,fwd}$ = The energy needed to to produce the forward reaction
- $E_{a,rev}$ = The energy needed to to produce the reverse reaction
- In this example the forward reaction is more favourable because $E_{a,fwd} < E_{a,rev}$
 - This is not always the case, depends on each reaction
- Reaction goes mostly forward: irreversible reaction
- Reaction goes forward and reverse: reversible reaction

Activation energy in catalyzed reactions

Reaction A + B \leftrightarrow C + D

- Catalyst provides a surface for the reactants and alters them so that they are more likely to react <u>or</u> a chemical that is not consumed in the reaction, but makes the reactants more likely to react
- Catalysts lower activation energy => reactions are more rapid
 - Which makes it possible to use smaller reactors
- Reactions are enabled in lower temperatures and pressures with catalysts

Reaction rate

- Reaction: $A + B \leftrightarrow C + D$
- Reaction rate in liquid phase =

 $r_{reaction, A} = k_r c_A^n c_B^m$

- r_{reaction, A} units are moles or mass of A / time * volume
- c_A = concentration of A (moles or mass / volume)
- c_B = concentration of B (moles or mass / volume)
- k_r = reaction rate constant (units depend on the form of the rate equation)
- n, m = order of the reaction, the general case
 - nth order, mth order, n+mth order
 - Most common orders of reaction 0, ¹/₂, 1, 2, 3
 - In water engineering the reaction order is usually already known (unless you are doing research)

Examples of reaction rates

 $2NO + O_2 \ \rightarrow \ 2NO_2$

 $r_{reaction,NO} = k_r c_{NO}^2 c_{O_2}$

- Oxidation of nitric oxide to nitrogen peroxide
- <u>Elementary reaction</u>: the order of the reaction matches the stoichiometry of the reaction

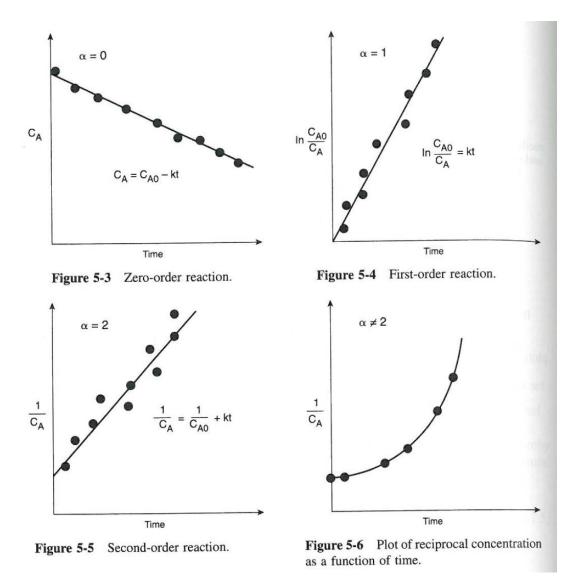
$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

 $r_{reaction,CO} = k_r c_{CO} c_{H_2O}^{0.5} c_{O_2}^{0.25}$

- In many cases the order of the reaction rate equation does not match the stoichiometry:
- Oxidation of carbon monoxide to carbon dioxide
- The reaction mechanisms is complex including water molecules, which are not shown in the total reaction equation

Reaction rates

- For gases:
- $r_{reaction, A} = k_r p_A^n p_B^m$
- p_A = partial pressure of A (atm)
- p_B = partial pressure of B (atm)
- The units of r _{reaction, A} are atm/time
 - Can be converted to mol/time volume with ideal gas law


Reaction rate constant k_r

- k_r is a constant but it depends on temperature
- Arrhenius equation:

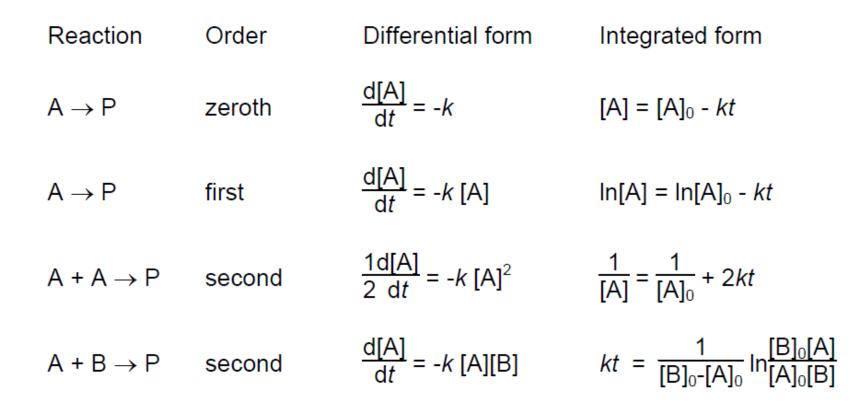
 $k_r = k_0 \exp(-E_a/RT)$

- $k_0 =$ frequency factor, units the same as k_r
 - Includes collisions and their direction
- E_a = activation energy (in units of energy per mole)
- R = universal gas constant, 8.31 J / mol K
- T = temperature (K)

Determining the reaction rate coefficient

- Experimental methods
 - The order of reaction cannot be deduced from the reaction equation
- Differential method
- Integralmethod:

A-> reaction products


• Zeroth order reaction

$$C_A = C_{A0} - kt$$

- First order reaction In $(C_{A0}/C_A) = kt$
- Second order reaction

$$1/C_{A} - 1/C_{A0} = kt$$

Common reaction rate equations

Equilibrium constant

- Equilibrium constant of a reaction, K (K_a, K_c, K_p)
- For a reversible reaction: $aA+bB \leftrightarrow cC+dD$
 - $\frac{\left[C\right]^{c} \cdot \left[D\right]^{d}}{\left[A\right]^{a} \cdot \left[B\right]^{b}} = K$ Concentrations of reaction products above, reactants below, coefficients as powers K changes with temperature (reference temp 25 °C)
- If the concentration of the reactants or products is changed, the other concentrations change according to the equilibrium constant
 - E.g. I you constantly remove C from the system, reaction balance moves towards the products
- Equilibrium constant is a link between reaction kinetics to chemical thermodynamics $\Delta G^{\circ} = -RT \ln K$
 - ΔG° = standard Gibbs free energy change of the reaction (the driving force of the reaction

Special equilibrium constants

- Gas reactions
 - Reaction $aA(g) + bB(g) \leftrightarrow cC(g) + dD(g)$
 - Use partial pressures: $K_p = P_C^c \times P_D^d / P_A^a \times P_B^b$
- Heterogenous reactions involving solid substances
 - Reaction $CaCO_3(s) \leftrightarrow CaO(s) + CO_2(g)$
 - Equilibrium constant does not include solids: $K_p = P_{CO2}$

Acids and water

Acid – base reactions K_a = dissociation constant HA = acid, A⁻ = base

$$\begin{split} \mathrm{HA} \ + \ \mathrm{H}_2\mathrm{O} &\to \mathrm{H}_3\mathrm{O}^+ \ + \ \mathrm{A}^- \\ \\ \mathrm{HA} \ \to \mathrm{H}^+ + \ \mathrm{A}^- \\ \\ \mathrm{K}_a \ = \frac{\left[\mathrm{H}^+\right]\!\!\left[\mathrm{A}^-\right]}{\left[\mathrm{HA}\right]} \end{split}$$

Dissociation of water, K_w

 $H_2O \rightarrow H^+ + OH^-$

$$\mathbf{K}_{w} = \frac{\left[\mathbf{H}^{+}\right]\left[\mathbf{OH}^{-}\right]}{\left[\mathbf{H}_{2}\mathbf{O}\right]}$$

$$\mathbf{K}_{w} = \left[\mathbf{H}^{+}\right] \left[\mathbf{O}\mathbf{H}^{-}\right] = 10^{-14}$$

 $pH = -\log[H^+]$

Equilibrium constant - example of use

At which pH you would operate an ammonia stripping plant? What we know: $NH_4^+ \leftrightarrow NH_3 + H^+$ $K_a = 10^{-9.3} = \frac{[NH_3][H^+]}{[NH_4^+]}$ First we try at pH 7: % $NH_3 = \frac{[NH_3]}{[NH_4^+] + [NH_3]} \cdot 100$ We need to express NH_4^+ in terms of NH_3 : $10^{-9.3} = \frac{[NH_3][10^{-7}]}{[NH_4^+]} \implies [NH_4^+] = 200 \cdot [NH_3]$ Substituting in the %- equation: % $NH_3 = \frac{[NH_3]}{200 \cdot [NH_3] + [NH_3]} \cdot 100 = 0.5\%$

For pH 6 : 0.052%, 8: 4.8%, 9: 33 %, 10: 83%, 11: 98%.

Answer: An alkaline pH would be best. Because NH₃ is removed from the system by stripping, pH 9-10 could be sufficient. The exact answer depends on the required yield and cost optimization of alkali addition.

Reduction –oxidation reactions

- Also called redox reactions
- Transfer of electrons between reactants
- Oxidation can be thought as:
 - Loss of electron(s)
- Reduction can be thought as:
 - Gaining electron(s)

 $Ox + n_e e^- \leftrightarrow Red$

Redox-reactions

- An oxidising agent oxidises something else when it is reduced itself
- A reduction agent reduces something else when it is oxidized itself
- In redox-reactions both reduction and oxidation happen the same time
 - Be careful with the terms!

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

- Fe_2O_3 is the oxidizing agent and is reduced in the reaction.
- CO is the reducing agent and is oxidized in the reaction.