Useful reminders

WAT-E2120 Physical and Chemical Treatment of Water and Waste Pirjo Rantanen Lic. Tech.

Aalto University

Addition of substances

- Convert all the ions and molecules as the share of the element only, to be able to add compounds together:
- $\mathrm{NH}_{3}-\mathrm{N}^{2}$ or NH_{3} as N or $\mathrm{NH}_{3} \times \mathrm{mgN} / \mathrm{l}$
- Examples (this list is just the beginning!):
- Nitrogen: $\mathrm{NH}_{3}, \mathrm{NH}_{4}{ }^{+}, \mathrm{NO}_{3}{ }^{-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{N}_{\text {tot }}$, org. $\mathrm{N}, \mathrm{NO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{5}, \ldots$
- Phosphorus: $\mathrm{PO}_{4}{ }^{3-}, \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}, \mathrm{P}_{\text {tot }}, \mathrm{P}_{\text {aq }}, \mathrm{PO}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}, \ldots$
- Sulphur: SO42-, SO32-, SO2, SO3, ...
- Chlorine: $\mathrm{Cl}, \mathrm{HOCl}, \mathrm{OCl}^{-}, \mathrm{ClO}_{2}, \mathrm{Cl}_{2} \mathrm{O}, \mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{ClO}_{2}^{-}, \mathrm{ClO}_{3}^{-}, \ldots$
- Works for one element at a time
- $P_{\text {tot }}, \mathrm{N}_{\text {tot, }} \mathrm{Fe}_{\text {tot }}$, etc. are the total amount of each element. Don't add them up to other compounds, because they already include them all!

How to convert compounds and ions for addition

- Change the ion or molecule to moles (e.g. mol/l or mmol/l) by dividing with the molar mass of the compound
- $15 \mathrm{mg} / \mathrm{l} \mathrm{NH}_{3}=(15 \mathrm{mg} / \mathrm{I}) /\left[\left(14+3^{*} 1\right) \mathrm{mg} / \mathrm{mmol}\right]=0.88 \mathrm{mmol} / \mathrm{INH}_{3}$
- Multiply the moles of ion or molecule with the number of atoms in the compound
- $1 \mathrm{~mol} / \mathrm{I} \mathrm{NH}_{3}$ contains $1 \mathrm{~mol} / \mathrm{I} \mathrm{N}$ and $3 \mathrm{~mol} / \mathrm{l} \mathrm{H}$
- Change the moles back to $\mathrm{mg}: \mathrm{s}$ or $\mathrm{g}: \mathrm{s}$ by multiplying with the element's molar mass
- $0.88 \mathrm{mmol} / \mathrm{I} * 14 \mathrm{mg} / \mathrm{mmol}=12.3 \mathrm{mg} / \mathrm{INH}_{3}-\mathrm{N}=12 \mathrm{mg} / \mathrm{l} \mathrm{NH}_{3}-\mathrm{N}$
- Molar masses are e.g. in the course book or any other periodic table of the elements (e.g. http://www.ptable.com/)

Reality check -Units

- What is the difference of mg / l and $\mathrm{g} / \mathrm{m}^{3}$
- What is the difference of $\mathrm{kg} / \mathrm{m}^{3}$ and g / l

Significant numbers - another reality check!

- Consider very strictly if there are more than 2 significant numbers!!!!
- If you use only 2 significant numbers, you are correct in 99% of cases
- Sometimes there is only one significant number...

